Please can you check where I have gone wrong with this solution. The given answer is different from mine.
Resolve into Partial Fractions
\(\displaystyle \L\frac{{2x}}{{(1 + 2x)(1 + 3x^2 )}}\)
\(\displaystyle \L
\frac{{2x}}{{(1 + 2x)(1 + 3x^2 )}} \equiv \frac{A}{{1 + 2x}} + \frac{{Bx + C}}{{1 + 3x^2 }}
\\
\begin{array}{l}
\\
\equiv \frac{{A(1 + 3x^2 ) + (Bx + C)(1 + 2x)}}{{(1 + 2x)(1 + 3x^2 )}} \\
\\
\end{array}
\\
\begin{array}{l}
{\rm multiplying out numerator and grouping coefficients }... \\
\\
\end{array}
\\
\\
\begin{array}{l}
\\
\equiv {\rm (3A + 2B)}x^2 + (B + 2C)x + (A + C) \\
\\
{\rm comparing coefficients:} \\
\\
{\rm [}x^2 {\rm ] }0 = 3A + 2B{\rm }.............\left( {\rm 1} \right) \\
{\rm [}x{\rm ] }2 = B + 2C{\rm }.............\left( {\rm 2} \right) \\
{\rm[} CT{\rm ] } 0 = A + C{\rm }...............\left( {\rm 3} \right) \\
\left( {\rm 2} \right){\rm x }2{\rm }4 = 2B + 4C \\
{\rm minus}\left( {\rm 1} \right){\rm }\underline {{\rm 0 = 3A + 2B}} \\
{\rm 4 = 3A + 4C }................\left( {\rm 4} \right) \\
\\
\left( {\rm 3} \right){\rm x 3 }\underline {0 = 3A + 3C} {\rm }.....{\rm take from }\left( {\rm 4} \right) \\
{\rm }4 = C \\
\\
{\rm substituting into }\left( {\rm 3} \right){\rm and }\left( {\rm 2} \right),{\rm A = } - 4{\rm and }B = - 6 \\
\end{array}
\\
\\
\equiv \frac{{2x}}{{(1 + 2x)(1 + 3x^2 )}} \equiv \frac{{ - 4}}{{(1 + 2x)}} - \frac{{6x + 4}}{{(1 + 3x^2 )}}
\\
\\\)
But the given answer is \(\displaystyle \L \frac{{2x}}{{(1 + 2x)(1 + 3x^2 )}} \equiv \frac{{ - 4}}{{7(1 + 2x)}} - \frac{{6x + 4}}{{7(1 + 3x^2 )}}\)
What have I missed?
Thanks
Resolve into Partial Fractions
\(\displaystyle \L\frac{{2x}}{{(1 + 2x)(1 + 3x^2 )}}\)
\(\displaystyle \L
\frac{{2x}}{{(1 + 2x)(1 + 3x^2 )}} \equiv \frac{A}{{1 + 2x}} + \frac{{Bx + C}}{{1 + 3x^2 }}
\\
\begin{array}{l}
\\
\equiv \frac{{A(1 + 3x^2 ) + (Bx + C)(1 + 2x)}}{{(1 + 2x)(1 + 3x^2 )}} \\
\\
\end{array}
\\
\begin{array}{l}
{\rm multiplying out numerator and grouping coefficients }... \\
\\
\end{array}
\\
\\
\begin{array}{l}
\\
\equiv {\rm (3A + 2B)}x^2 + (B + 2C)x + (A + C) \\
\\
{\rm comparing coefficients:} \\
\\
{\rm [}x^2 {\rm ] }0 = 3A + 2B{\rm }.............\left( {\rm 1} \right) \\
{\rm [}x{\rm ] }2 = B + 2C{\rm }.............\left( {\rm 2} \right) \\
{\rm[} CT{\rm ] } 0 = A + C{\rm }...............\left( {\rm 3} \right) \\
\left( {\rm 2} \right){\rm x }2{\rm }4 = 2B + 4C \\
{\rm minus}\left( {\rm 1} \right){\rm }\underline {{\rm 0 = 3A + 2B}} \\
{\rm 4 = 3A + 4C }................\left( {\rm 4} \right) \\
\\
\left( {\rm 3} \right){\rm x 3 }\underline {0 = 3A + 3C} {\rm }.....{\rm take from }\left( {\rm 4} \right) \\
{\rm }4 = C \\
\\
{\rm substituting into }\left( {\rm 3} \right){\rm and }\left( {\rm 2} \right),{\rm A = } - 4{\rm and }B = - 6 \\
\end{array}
\\
\\
\equiv \frac{{2x}}{{(1 + 2x)(1 + 3x^2 )}} \equiv \frac{{ - 4}}{{(1 + 2x)}} - \frac{{6x + 4}}{{(1 + 3x^2 )}}
\\
\\\)
But the given answer is \(\displaystyle \L \frac{{2x}}{{(1 + 2x)(1 + 3x^2 )}} \equiv \frac{{ - 4}}{{7(1 + 2x)}} - \frac{{6x + 4}}{{7(1 + 3x^2 )}}\)
What have I missed?
Thanks