Hello, aruwin!
I can read about half of what you wrote.
Differentiate implicitly: .\(\displaystyle 3x^2 + 6x + 3y^2y' - 2y' \:=\:0 \quad\Rightarrow\quad 2y' - 3y^2y' \:=\:3x^2 + 6x \)
. . . . \(\displaystyle (2 - 3y^2)y' \:=\:3x)x+2) \quad\Rightarrow\quad y' \:=\:\dfrac{3x(x+2)}{2-3y^2}\)
\(\displaystyle \text{If }y' = 0,\text{ then: }\,3x(x+2) \:=\:0 \quad\Rightarrow\quad x \:=\:0,\,-2\)
If \(\displaystyle x = 0\), the equation becomes: .\(\displaystyle y^3-2y \:=\:0 \quad\Rightarrow\quad y(y^2-2) \:=\:0 \)
. . Hence: .\(\displaystyle y \:=\:0,\,\pm\sqrt{2}\)
We have three extreme points: .\(\displaystyle (0,\,0),\;(0,\sqrt{2}),\;(0,\text{-}\sqrt{2})\)
If \(\displaystyle x = -2\), the equation becomes: .\(\displaystyle -8 + 12 + y^3 - 2y \:=\:0 \quad\Rightarrow\quad y^3 - 2y + 4 \:=\:0\)
. . Hence: .\(\displaystyle (y + 2)(y^2-2y + 2) \:=\:0 \quad\Rightarrow\quad y \:=\:-2\)
And we have another extreme point: .\(\displaystyle (\text{-}2,\,\text{-}2)\)