Please can you check this integral question?

nil101

New member
Joined
Oct 16, 2005
Messages
37
Find the area enclosed between the curve \(\displaystyle y = - 4x - x^2\) and the line \(\displaystyle y = - \frac{1}{4}x\)

To find the point of intersection:

\(\displaystyle - 4x - x^2 = - \frac{1}{4}x\)

\(\displaystyle x = - \frac{{15}}{4}\)


Limits are \(\displaystyle x = - \frac{{15}}{4}{\rm and }x = 0\)


\(\displaystyle \int_{ - {\textstyle{{15} \over 4}}}^0 {( - 4x - x^2 )dx = - 2} \left[ {x^2 } \right]_{ - {\textstyle{{15} \over 4}}}^0 - \frac{1}{3}\left[ {x^3 } \right]_{ - {\textstyle{{15} \over 4}}}^0\)

\(\displaystyle = - 2\left[ { - 14.06} \right] - \frac{1}{3}\left[ {52.70} \right] = 10.547\)


\(\displaystyle \int_{ - {\textstyle{{15} \over 4}}}^0 {( - \frac{1}{4}x)dx = - \frac{1}{8}} \left[ {x^2 } \right]_{ - {\textstyle{{15} \over 4}}}^0 = \left[ { - 14.06} \right] = 1.757\)

So area enclosed is
\(\displaystyle 10.247 - 1.757 = 8.79\)

Is this right?
Thanks
 
\(\displaystyle \L\\\int_{\frac{-15}{4}}^{0}(-4x-x^{2}-(\frac{-x}{4})dx\)

=\(\displaystyle \L\\\int_{\frac{-15}{4}}^{0}{-x^{2}-\frac{15x}{4}}dx=\frac{1125}{128}=8.7890625\)

Very good!. You get a cookie.
 
Top