Please help in solving Find the perimeter of the cord r = a (1+cos ?) Note: ? means "Theeta".
R Raju New member Joined Sep 2, 2009 Messages 2 Sep 2, 2009 #1 Please help in solving Find the perimeter of the cord r = a (1+cos ?) Note: ? means "Theeta".
D Deleted member 4993 Guest Sep 2, 2009 #2 Raju said: Please help in solving Find the perimeter of the cord r = a (1+cos ?) Note: ? means "Theeta". Click to expand... First define the problem fully! Is it a circle you are talking about? What is 'r' and 'a' and 'theta'? Where are these located (is there a picture)?
Raju said: Please help in solving Find the perimeter of the cord r = a (1+cos ?) Note: ? means "Theeta". Click to expand... First define the problem fully! Is it a circle you are talking about? What is 'r' and 'a' and 'theta'? Where are these located (is there a picture)?
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Sep 2, 2009 #3 Hello, Raju! \(\displaystyle \text{Find the perimeter of the cardioid: }\;r \:=\:a(1+\cos\theta)\) Click to expand... \(\displaystyle \text{Arc length for polar functions: }\;L \;=\;\int^{\beta}_{\alpha} \sqrt{r^2 + \left(\tfrac{dr}{d\theta}\right)^2}\,d\theta\) \(\displaystyle \text{We have: }\;r \:=\:a(1+\cos\theta) \qquad \tfrac{dr}{d\theta} \:=\:-a\sin\theta\) \(\displaystyle \text{Then: }\;r^2 + \left(\tfrac{dr}{d\theta}\right)^2 \;=\;\bigg[a(1+\cos\theta)\bigg]^2 + \bigg[-a\sin\theta\bigg]^2 \;=\; a^2(1 + 2\cos\theta + \cos^2\!\theta) + a^2\sin^2\theta\) . . \(\displaystyle = \;a^2\bigg[1 + 2\cos\theta + \underbrace{\cos^2\!\theta + \sin^2\!\theta} \bigg] \;=\;a^2[2 + 2\cos\theta] \;=\;2a^2(1 + \cos\theta)\) . . . . . . . . . . . . . . . . . \(\displaystyle ^{\text{This is 1}}\) . . \(\displaystyle = \;4a^2\cdot\frac{1+\cos\theta}{2} \;=\; 4a^2\cos^2\!\tfrac{\theta}{2}\) \(\displaystyle \text{Hence: }\;\sqrt{r^2 + \left(\tfrac{dr}{d\theta}\right)^2} \;=\;\sqrt{4a^2\cos^2\!\tfrac{\theta}{2}} \;=\; 2a\cos\!\tfrac{\theta}{2}\) \(\displaystyle \text{Due to the symmetry, we can find the length from 0 to }\pi\text{ and multiply by 2.}\) . . \(\displaystyle \text{Therefore: }\;L \;=\;2 \times 2a\int^{\pi}_0 \cos\!\tfrac{\theta}{2}\,d\theta\) Go for it!
Hello, Raju! \(\displaystyle \text{Find the perimeter of the cardioid: }\;r \:=\:a(1+\cos\theta)\) Click to expand... \(\displaystyle \text{Arc length for polar functions: }\;L \;=\;\int^{\beta}_{\alpha} \sqrt{r^2 + \left(\tfrac{dr}{d\theta}\right)^2}\,d\theta\) \(\displaystyle \text{We have: }\;r \:=\:a(1+\cos\theta) \qquad \tfrac{dr}{d\theta} \:=\:-a\sin\theta\) \(\displaystyle \text{Then: }\;r^2 + \left(\tfrac{dr}{d\theta}\right)^2 \;=\;\bigg[a(1+\cos\theta)\bigg]^2 + \bigg[-a\sin\theta\bigg]^2 \;=\; a^2(1 + 2\cos\theta + \cos^2\!\theta) + a^2\sin^2\theta\) . . \(\displaystyle = \;a^2\bigg[1 + 2\cos\theta + \underbrace{\cos^2\!\theta + \sin^2\!\theta} \bigg] \;=\;a^2[2 + 2\cos\theta] \;=\;2a^2(1 + \cos\theta)\) . . . . . . . . . . . . . . . . . \(\displaystyle ^{\text{This is 1}}\) . . \(\displaystyle = \;4a^2\cdot\frac{1+\cos\theta}{2} \;=\; 4a^2\cos^2\!\tfrac{\theta}{2}\) \(\displaystyle \text{Hence: }\;\sqrt{r^2 + \left(\tfrac{dr}{d\theta}\right)^2} \;=\;\sqrt{4a^2\cos^2\!\tfrac{\theta}{2}} \;=\; 2a\cos\!\tfrac{\theta}{2}\) \(\displaystyle \text{Due to the symmetry, we can find the length from 0 to }\pi\text{ and multiply by 2.}\) . . \(\displaystyle \text{Therefore: }\;L \;=\;2 \times 2a\int^{\pi}_0 \cos\!\tfrac{\theta}{2}\,d\theta\) Go for it!