perfect square

suvadip

New member
Joined
Feb 21, 2012
Messages
7
For which value of y(any real number),

(16+y)x2-4(1+y)x+(y2-128)/4 is a perfect square?

Please help me
 
Hello, suvadip!

For real value of y is (y+16)x24(y+1)xy21284 a perfect square?\displaystyle \text{For real value of }y\text{ is }\,(y+16)x^2 - 4(y+1)x - \dfrac{y^2-128}{4}\,\text{ a perfect square?}

A quadratic is a square if its discriminant, b2 ⁣ ⁣4ac\displaystyle b^2\!-\!4ac, is zero.

D  =  [4(y+1)]24(y+16)(y21284)\displaystyle D \;=\;[4(y+1)]^2 - 4(y+16)\left(\frac{y^2-128}{4}\right)

. . .=  16(y2+2y+1)(y+16)(y2128)\displaystyle =\;16(y^2+2y+1) - (y+16)(y^2-128)

. . .=  16y2+32y+16(y3+16y2128y2048)\displaystyle =\;16y^2 + 32y + 16 - (y^3 + 16y^2 - 128y - 2048)

. . .=  16y2+32y+16y316y2+128y+2048\displaystyle =\;16y^2 + 32y + 16 - y^3 - 16y^2 + 128y + 2048

. . .=  y3+160y+2064\displaystyle =\;-y^3 + 160y + 2064


If y3160y2064=0, the only rational roots are:\displaystyle \text{If }y^3 - 160y - 2064 \:=\:0,\, \text{ the only rational roots are:} \(\displaystyle 1,2,4,6,8,16,18,24,\,\hdots\)

If y=16, we get: 528\displaystyle \text{If }y = 16,\,\text{ we get: }\,-528
If y=18, we get: +888\displaystyle \text{If }y = 18,\,\text{ we get: }\,+888

There is an irrational root between 16 and 18.

. . Good luck!
 
Perhaps I was unable to make you understand. I need only the real value of y for which the given expression will be a perfect square. x should be present in the expression. I want to write the expression as (ax-b)2 . Actually I want to solve x4-8x3+4x+32=0 by Ferrari method. Thats why I need such y.

Huh? Is that the FULL original problem?

For now, the expression is a perfect square in infinite cases; like:
x=0, y=12 : 4
x=0, y=18 :49
x=1, y=36 : 196
x=2, y=6 : 9
 
Top