Partial Fractions: int (5x + 1)/[x(x - 3)^2] dx

jeng

New member
Joined
Apr 13, 2006
Messages
6
Using partial fractions, how would you integrate the following:

S [(5x+1) dx] / [x(x-3)^2]
 
Hello, jeng!

You didn't tell us exactly where your difficulty is . . .

\(\displaystyle \L\int \frac{5x\,+\,1}{x(x\,-\,3)^2}\,dx\)
The set-up? \(\displaystyle \L\;\frac{5x\,+\,1}{x(x\,-\,3)^2}\;= \;\frac{A}{x}\,+\,\frac{B}{x\,-\,3}\,+\,\frac{C}{(x\,-\,3)^2}\)


Clearing denominators?   5x+1  =  A(x3)2+B(x(x3)+Cx\displaystyle \;5x\,+\,1\;=\;A(x\,-\,3)^2\,+\,B(x(x\,-\,3) \,+\,Cx


Solving for A,B,C\displaystyle A,\,B,\,C ?

Let x=0:  1=9A        A=19\displaystyle x\,=\,0:\;1\:=\:9A\;\;\Rightarrow\;\;A\,=\,\frac{1}{9}

Let x=3:    16=3C        C=163\displaystyle x\,=\,3:\;\;16\,=\,3C\;\;\Rightarrow\;\;C\,=\,\frac{16}{3}

Let x=1    6=4A  2B+C        B=19\displaystyle x\,=\,1\;\;6\:=\:4A\,\,2B\,+\,C\;\;\Rightarrow\;\;B\,=\,-\frac{1}{9}

Hence: \(\displaystyle \L\,\frac{5x\,+\,1}{x(x\,-\,3)^2}\;=\;\frac{\frac{1}{9}}{x}\,+\,\frac{-\frac{1}{9}}{x\,-\,3} \,+\,\frac{\frac{16}{3}}{(x\,-\,3)^2}\)


Integrating ?

\(\displaystyle \L\;\;\frac{1}{9}\int\frac{dx}{x}\,-\,\frac{1}{9}\int\frac{dx}{x\,-\,3} \,+ \,\frac{16}{3}\int\)(x3)2dx\displaystyle (x\,-\,3)^{-2}\,dx

\(\displaystyle \L\;=\;\frac{1}{9}\ln|x|\,-\,\frac{1}{9}\ln|x\,-\,3|\,-\,\frac{16}{3}(x\,-\,3)^{-1}\,+\,C\)

\(\displaystyle \L\;=\;\frac{1}{9}\ln\left|\frac{x}{x\,-\,3}\right|\,-\,\frac{16}{3(x\,-\,3)} \,+\,C\)
 
Top