Hello, jeng!
You didn't tell us exactly
where your difficulty is . . .
\(\displaystyle \L\int \frac{5x\,+\,1}{x(x\,-\,3)^2}\,dx\)
The set-up? \(\displaystyle \L\;\frac{5x\,+\,1}{x(x\,-\,3)^2}\;= \;\frac{A}{x}\,+\,\frac{B}{x\,-\,3}\,+\,\frac{C}{(x\,-\,3)^2}\)
Clearing denominators? 5x+1=A(x−3)2+B(x(x−3)+Cx
Solving for A,B,C ?
Let
x=0:1=9A⇒A=91
Let
x=3:16=3C⇒C=316
Let
x=16=4A2B+C⇒B=−91
Hence: \(\displaystyle \L\,\frac{5x\,+\,1}{x(x\,-\,3)^2}\;=\;\frac{\frac{1}{9}}{x}\,+\,\frac{-\frac{1}{9}}{x\,-\,3} \,+\,\frac{\frac{16}{3}}{(x\,-\,3)^2}\)
Integrating ?
\(\displaystyle \L\;\;\frac{1}{9}\int\frac{dx}{x}\,-\,\frac{1}{9}\int\frac{dx}{x\,-\,3} \,+ \,\frac{16}{3}\int\)
(x−3)−2dx
\(\displaystyle \L\;=\;\frac{1}{9}\ln|x|\,-\,\frac{1}{9}\ln|x\,-\,3|\,-\,\frac{16}{3}(x\,-\,3)^{-1}\,+\,C\)
\(\displaystyle \L\;=\;\frac{1}{9}\ln\left|\frac{x}{x\,-\,3}\right|\,-\,\frac{16}{3(x\,-\,3)} \,+\,C\)