Hello there ,
I'm currently a bit stuck as to where the start on the following question,
r = f(s,t) , a = s + pt; b = s - pt and r is twice differentiable.Find \(\displaystyle \frac{\delta^2 r}{\delta a \delta b}\)
My thoughts are that
\(\displaystyle \frac{\delta r}{\delta s} =\frac{\delta r}{\delta a}\frac{\delta a}{\delta s} + \frac{\delta r}{\delta b}\frac{\delta b}{\delta s} = \frac{\delta r}{\delta a} + \frac{\delta r}{\delta b}\)
and
\(\displaystyle \frac{\delta r}{\delta t} =\frac{\delta r}{\delta a}\frac{\delta a}{\delta t} + \frac{\delta r}{\delta b}\frac{\delta b}{\delta t} = p \frac{\delta r}{\delta a} - p \frac{\delta r}{\delta b} = p(\frac{\delta r}{\delta a} - \frac{\delta r}{\delta b})\)
But not sure if this is going in the right direction and if so where to go.
Any help would be most appreciated
I'm currently a bit stuck as to where the start on the following question,
r = f(s,t) , a = s + pt; b = s - pt and r is twice differentiable.Find \(\displaystyle \frac{\delta^2 r}{\delta a \delta b}\)
My thoughts are that
\(\displaystyle \frac{\delta r}{\delta s} =\frac{\delta r}{\delta a}\frac{\delta a}{\delta s} + \frac{\delta r}{\delta b}\frac{\delta b}{\delta s} = \frac{\delta r}{\delta a} + \frac{\delta r}{\delta b}\)
and
\(\displaystyle \frac{\delta r}{\delta t} =\frac{\delta r}{\delta a}\frac{\delta a}{\delta t} + \frac{\delta r}{\delta b}\frac{\delta b}{\delta t} = p \frac{\delta r}{\delta a} - p \frac{\delta r}{\delta b} = p(\frac{\delta r}{\delta a} - \frac{\delta r}{\delta b})\)
But not sure if this is going in the right direction and if so where to go.
Any help would be most appreciated