logistic_guy
Full Member
- Joined
- Apr 17, 2024
- Messages
- 287
here is the question
i need to parametrize the curve defined by \(\displaystyle y = \frac{x^3 + y^3}{3x}\)
i tried \(\displaystyle x = t\) then \(\displaystyle y = \frac{t^3 + y^3}{3t}\)
\(\displaystyle y3t = t^3 + y^3\)
\(\displaystyle y3t - y^3 = t^3\)
\(\displaystyle y(3t - y^2) = t^3\)
can i say \(\displaystyle y = t^3\) and \(\displaystyle 3t - y^2 = t^3\)
this give \(\displaystyle y = \sqrt{3t - t^3}\) and \(\displaystyle y = -\sqrt{3t - t^3}\)
i call the curve \(\displaystyle \pmb{\alpha}(t) = (t, t^3)\) or \(\displaystyle \pmb{\alpha}(t) = (t, \sqrt{3t - t^3})\) or \(\displaystyle \pmb{\alpha}(t) = (t, -\sqrt{3t - t^3})\)
i need to parametrize the curve defined by \(\displaystyle y = \frac{x^3 + y^3}{3x}\)
i tried \(\displaystyle x = t\) then \(\displaystyle y = \frac{t^3 + y^3}{3t}\)
\(\displaystyle y3t = t^3 + y^3\)
\(\displaystyle y3t - y^3 = t^3\)
\(\displaystyle y(3t - y^2) = t^3\)
can i say \(\displaystyle y = t^3\) and \(\displaystyle 3t - y^2 = t^3\)
this give \(\displaystyle y = \sqrt{3t - t^3}\) and \(\displaystyle y = -\sqrt{3t - t^3}\)
i call the curve \(\displaystyle \pmb{\alpha}(t) = (t, t^3)\) or \(\displaystyle \pmb{\alpha}(t) = (t, \sqrt{3t - t^3})\) or \(\displaystyle \pmb{\alpha}(t) = (t, -\sqrt{3t - t^3})\)