parametrization of the ellipse

shivers20

Junior Member
Joined
Mar 3, 2006
Messages
68
x=4sint, y=2cost, 0<t<pi

x^2/16 + y^2/4 = 1

when t=0 x= 4sin(0) y=2cos(0)

x=4, y=2 (4,2)

I am having difficulty plotting the points.

Its an eclipse so my starting motion point is (4,2) and stops at halfway through the ellipse at pi.

Is this correct?
 
Are you required to graph from the parametrizations of x and y, rather than from the explicit formula?

Thank you.

Eliz.
 
Hello, shivers201

You had the right idea . . .


\(\displaystyle \begin{array}{cc}x\:=\:4\sin t \\ y\:=\:2\cos t\end{array}\;\;0\,<\,t\,<\,\pi\)

\(\displaystyle \L\:\frac{x^2}{16}\,+\,\frac{y^2}{4}\:=\:1\) . . . correct!

When \(\displaystyle t\,=\,0:\;\;\begin{array}{cc}x\,=\,4\sin(0)\,=\,0 \\ y\,=\,2\cos(0)\,=\,2\end{array}\;\;\Rightarrow\;\;(0,2)\)

When \(\displaystyle t\,=\,\frac{\pi}{2}:\;\;\begin{array}{cc}x\,=\,4\sin\left(\frac{\pi}{2}\right) \,= \,4 \\ y\,=\,2\cos\left(\frac{\pi}{2}\right)\,=\,0\end{array}\;\;\Rightarrow\;\;(4,0)\)

When \(\displaystyle t\,=\,\pi:\;\;\begin{array}{cc}x\,=\,4\sin(\pi)\,=\,0 \\ y\,=\,2\cos(\pi)\,=\,-2\end{array}\;\;\Rightarrow\;\;(0,-2)\)


The ellipse is formed from the 12:00 position,
. . clockwise to the 6:00 position.

 
Top