Parabolic Coordinates: -1 + x^2 + y^2 < 2z < 1 - x^2 - y^2

Felicity

New member
Joined
Sep 14, 2008
Messages
2
a 3D solid is bounded by 2 paraboloids. The binding condition in cartesian coordinates is

-1+(x[sup:29hv4ru9]2[/sup:29hv4ru9]+y[sup:29hv4ru9]2[/sup:29hv4ru9]) < 2z < 1-(x[sup:29hv4ru9]2[/sup:29hv4ru9]+y[sup:29hv4ru9]2[/sup:29hv4ru9])

a) rewrite the binding condition in parabolic coordinates
b) using parabolic coordinates and the given metric tensor, find the volume of the solid

using x=stcos(p) y= stsin(p) z= (t[sup:29hv4ru9]2[/sup:29hv4ru9]-s[sup:29hv4ru9]2[/sup:29hv4ru9])/2

I found the binding conditions to be equal to

-1 + s[sup:29hv4ru9]2[/sup:29hv4ru9]t[sup:29hv4ru9]2[/sup:29hv4ru9] < t[sup:29hv4ru9]2[/sup:29hv4ru9] - s[sup:29hv4ru9]2[/sup:29hv4ru9] < 1 - s[sup:29hv4ru9]2[/sup:29hv4ru9]t[sup:29hv4ru9]2[/sup:29hv4ru9]

I have the metric tensor and I know i just need to do a triple integral but how do I find the functions of s, t and p and how do I know the limits of integration?

any help would be greatly appreciated

thank you

-Felicity
 
Top