Here's the problem:
Lines are drawn from a point of intersection of the parabolas y = ax[sup:2o8005mv]2[/sup:2o8005mv] and y = 4 – x[sup:2o8005mv]2[/sup:2o8005mv] to the vertex of each parabola. For what value of a are these lines perpendicular?
Here's what I've done so far:
Let P = (u, v) be a point of intersection. Since v = au[sup:2o8005mv]2[/sup:2o8005mv], P = (u, au[sup:2o8005mv]2[/sup:2o8005mv]). Let m[sub:2o8005mv]1[/sub:2o8005mv] be the slope of the line through P and the vertex of parabola y = ax[sup:2o8005mv]2[/sup:2o8005mv], (0, 0), and let m[sub:2o8005mv]2[/sub:2o8005mv] be the slope of the line through P and the vertex of parabola y = 4 – x[sup:2o8005mv]2[/sup:2o8005mv], (0, 4). Then m[sub:2o8005mv]1[/sub:2o8005mv] = (au[sup:2o8005mv]2[/sup:2o8005mv] – 0) / (u – 0) = au, and m[sub:2o8005mv]2[/sub:2o8005mv] = (au[sup:2o8005mv]2[/sup:2o8005mv] – 4) / (u – 0) = au – 4 / u. We want m[sub:2o8005mv]1[/sub:2o8005mv] = – 1 / m[sub:2o8005mv]2[/sub:2o8005mv] for the lines to be perpendicular.
? au = – 1 / (au – 4 / u)
? au(au – 4 / u) + 1 = 0
? a[sup:2o8005mv]2[/sup:2o8005mv]u[sup:2o8005mv]2[/sup:2o8005mv] – 4a + 1 = 0
At this point, I need to substitute a value for u[sup:2o8005mv]2[/sup:2o8005mv] in order to solve for a, but I'm not sure how to find that value.
Lines are drawn from a point of intersection of the parabolas y = ax[sup:2o8005mv]2[/sup:2o8005mv] and y = 4 – x[sup:2o8005mv]2[/sup:2o8005mv] to the vertex of each parabola. For what value of a are these lines perpendicular?
Here's what I've done so far:
Let P = (u, v) be a point of intersection. Since v = au[sup:2o8005mv]2[/sup:2o8005mv], P = (u, au[sup:2o8005mv]2[/sup:2o8005mv]). Let m[sub:2o8005mv]1[/sub:2o8005mv] be the slope of the line through P and the vertex of parabola y = ax[sup:2o8005mv]2[/sup:2o8005mv], (0, 0), and let m[sub:2o8005mv]2[/sub:2o8005mv] be the slope of the line through P and the vertex of parabola y = 4 – x[sup:2o8005mv]2[/sup:2o8005mv], (0, 4). Then m[sub:2o8005mv]1[/sub:2o8005mv] = (au[sup:2o8005mv]2[/sup:2o8005mv] – 0) / (u – 0) = au, and m[sub:2o8005mv]2[/sub:2o8005mv] = (au[sup:2o8005mv]2[/sup:2o8005mv] – 4) / (u – 0) = au – 4 / u. We want m[sub:2o8005mv]1[/sub:2o8005mv] = – 1 / m[sub:2o8005mv]2[/sub:2o8005mv] for the lines to be perpendicular.
? au = – 1 / (au – 4 / u)
? au(au – 4 / u) + 1 = 0
? a[sup:2o8005mv]2[/sup:2o8005mv]u[sup:2o8005mv]2[/sup:2o8005mv] – 4a + 1 = 0
At this point, I need to substitute a value for u[sup:2o8005mv]2[/sup:2o8005mv] in order to solve for a, but I'm not sure how to find that value.