[MATH]\left(v_1,\frac{v_1 + v_2}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}[(v_1, v_1) + (v_1, v_2)][/MATH]
when I simplify the right hand side and compare it with the left side, I get
The notation [MATH](\boldsymbol{a},\boldsymbol{b})[/MATH] represents the 'dot product', i.e. [MATH]\boldsymbol{a}.\boldsymbol{b}[/MATH]Now [MATH]\boldsymbol{v_1}.\boldsymbol{v_1}=\binom{1}{0}.\binom{1}{0}=1[/MATH]and [MATH]\boldsymbol{v_1}.\boldsymbol{v_2}=\binom{1}{0}.\binom{0}{1}=0[/MATH]so e.g. [MATH]\left(\boldsymbol{v_1},\frac{\boldsymbol{v_1}+\boldsymbol{v_2}}{\sqrt{2}} \right) = \boldsymbol{v_1}. \frac{1}{\sqrt{2}}(\boldsymbol{v_1}+\boldsymbol{v_2})=\frac{1}{\sqrt{2}}\boldsymbol{v_1}.(\boldsymbol{v_1}+\boldsymbol{v_2})= \frac{1}{\sqrt{2}}(\boldsymbol{v_1}.\boldsymbol{v_1}+\boldsymbol{v_1}.\boldsymbol{v_2})=\frac{1}{\sqrt{2}}(1+0)=\frac{1}{\sqrt{2}}[/MATH]
In fact you can easily write down the matrix representation directly from this line:
The first column is just what [MATH]\boldsymbol{v_1}[/MATH] is mapped to (in terms of the basis vectors): [MATH]
\begin{pmatrix}
\frac{1}{\sqrt{2}}\\
\frac{1}{\sqrt{2}}
\end{pmatrix}[/MATH]
The second column is just what [MATH]\boldsymbol{v_2}[/MATH] is mapped to (in terms of the basis vectors): [MATH]
\begin{pmatrix}
\frac{1}{\sqrt{2}}\\
-\frac{1}{\sqrt{2}}
\end{pmatrix}[/MATH]
So the matrix for H is:
[MATH]
\begin{pmatrix}
\frac{1}{\sqrt{2}} &&\frac{1}{\sqrt{2}}\\
\frac{1}{\sqrt{2}} && -\frac{1}{\sqrt{2}}
\end{pmatrix}[/MATH]
or
This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
By continuing to use this site, you are consenting to our use of cookies.