You want the basis of the nullspace of [9,-9,-1,-1]~[1,-1,-1/9,-1/9]. The nullspace is orthogonal to the row space.
The solution set is almost immediate:
\(\displaystyle \begin{pmatrix}x+y/9+z/9\\x\\y\\z\end{pmatrix} = x\begin{pmatrix}1\\1\\0\\0\end{pmatrix}+y\begin{pmatrix}1/9\\0\\1\\0\end{pmatrix}+z\begin{pmatrix}1/9\\0\\0\\1\end{pmatrix}\)
You can remove the fractions if desired by considering an appropriate multiple.