… show me how to do this step by step …
Hi kannatoj. I'll post a similar, worked example. You haven't told us what you already know about Order of Operations and doing arithmetic with fractions, so I don't know which steps you need explained. If you have specific questions about the example below, then please post them.
\[\frac{13}{20} \div \bigg(\bigg(\frac{2}{9} - \frac{3}{4} + \frac{5}{4}\bigg) \times \frac{1}{5}\bigg)\]
\[\frac{13}{20} \div \bigg(\bigg(\frac{8}{36} - \frac{27}{36} + \frac{45}{36}\bigg) \times \frac{1}{5}\bigg)\]
\[\frac{13}{20} \div \bigg(\bigg(\frac{8 - 27 + 45}{36}\bigg) \times \frac{1}{5}\bigg)\]
\[\frac{13}{20} \div \bigg(\bigg(\frac{26}{36}\bigg) \times \frac{1}{5}\bigg)\]
\[\frac{13}{20} \div \bigg(\bigg(\frac{\cancel{26}^{13}}{\cancel{36}_{18}}\bigg) \times \frac{1}{5}\bigg)\]
\[\frac{13}{20} \div \bigg(\frac{13}{18} \times \frac{1}{5}\bigg)\]
\[\frac{13}{20} \div \bigg(\frac{13 \times 1}{18 \times 5}\bigg)\]
\[\frac{13}{20} \div \frac{13}{90}\]
\[\frac{13}{20} \times \frac{90}{13}\]
\[\frac{\cancel{13}^{1}}{\cancel{20}_{2}} \times \frac{\cancel{90}^{9}}{\cancel{13}_{1}}\]
\[\frac{1 \times 9}{2 \times 1}\]
\[\frac{9}{2}\]
?