A closed container is made with a hemisphere on top of a cylinder. the height and the radius of the cylinder are h and r respectively. given that the surface area of the container is 20cm^2 fond all dimensions of the container (the radius and height) that will maximize the volume if the container.
Sphere
S= 4pir²
V= 4/3pir³
Cylinder
V= pir²h
S= 2pirh + 2pir²
Surface area of the conaitner
20=2pirh + 2pir² + (4pir²)/2
20=2pirh + 4pir²
(20-4pir²)/2pir=h
Total Volume
V= 4/3pir³ + pir²h
V= 4/3pir³ + pir²((20-4pir²)/2pir)
V= 4/3pir³ + (20pir²-4pir²)/2pir
V= 4/3pir³ + 2pir(10r-2r)/2pir
V= 4/3pir³ + (10r-2r)
V= 4/3pir³ + 8r
Find v'
V'= 4pir² + 8
Maximize
0 = 4pir² + 8
-8 = 4pir²
root(-8/4pi) =r
Did I make a mistake somewhere?
Sphere
S= 4pir²
V= 4/3pir³
Cylinder
V= pir²h
S= 2pirh + 2pir²
Surface area of the conaitner
20=2pirh + 2pir² + (4pir²)/2
20=2pirh + 4pir²
(20-4pir²)/2pir=h
Total Volume
V= 4/3pir³ + pir²h
V= 4/3pir³ + pir²((20-4pir²)/2pir)
V= 4/3pir³ + (20pir²-4pir²)/2pir
V= 4/3pir³ + 2pir(10r-2r)/2pir
V= 4/3pir³ + (10r-2r)
V= 4/3pir³ + 8r
Find v'
V'= 4pir² + 8
Maximize
0 = 4pir² + 8
-8 = 4pir²
root(-8/4pi) =r
Did I make a mistake somewhere?