24|p2- q2 ...... should be written as ......... 24|(p2 - q2)Prove that if p>q>5, where p and q are both prime, then 24| p2-q2
Python would return [imath]-q^2[/imath], which it would consider true24|p2- q2 ...... should be written as ......... 24|(p2 - q2)
Otherwise the required conclusion is false!
Number theory is fascinating! I never knew that one of p-q, p, p+q must be a multiple of 3.Both (p-q) and (p+q) are divisible by 2, and one of the is divisible by 4, thus [imath]p^2-q^2[/imath] is divisible by 8. Among three numbers p-q, p, p+q one is divisible by 3, and it cannot be 'p', thus [imath]p^2-q^2[/imath] is divisible by 3.
I should of said that I see a proof.Number theory is fascinating! I never knew that one of p-q, p, p+q must be a multiple of 3.
Let's see if I can see the proof. If we set A=p-q, the the three numbers are A, A+q, A+2q. Their sum is certainly a multiple of 3. I need more time for this one.
OK, I see the proof! Thanks for that one!
Garbage in → Garbage outPython would return [imath]-q^2[/imath], which it would consider true