Number of primes less than or equal to a number up to 3,000, approximation formula

greg1313

New member
Joined
May 23, 2015
Messages
43
I discovered a relatively good approximation formula for π(x), \displaystyle \pi(x), \ which gives the exact number of prime numbers
less than or equal to the value of x. For example,  π(10)=4, \displaystyle \ \pi(10) = 4, \ because there are four prime numbers less than
or equal to 10. My formula works best in the interval of about  10x3,000.\displaystyle \ 10 \le x \le 3,000.

Approximation formula:   Ceiling function of \displaystyle \ \ Ceiling \ function \ of \  [xlog10(x2)]\displaystyle \ \bigg[ \dfrac{x}{\log_{10}{(x^2)}} \bigg]

I cherry-picked multiples of 25 for certain x-values, where each approximation formula's value equals the corresponding π(x)\displaystyle \pi(x) value.

x        \displaystyle \ \ \ \ \ \ \ | Approx. formula value =  π(x)\displaystyle \ \pi(x)
-------------------------------------------
   \displaystyle \ \ \ 25          \displaystyle \ \ \ \ \ \ \ \ \ 9
   \displaystyle \ \ \ 50        \displaystyle \ \ \ \ \ \ \ 15
 \displaystyle \ 100        \displaystyle \ \ \ \ \ \ \ 25
 \displaystyle \ 125        \displaystyle \ \ \ \ \ \ \ 30
 \displaystyle \ 150        \displaystyle \ \ \ \ \ \ \ 35
 \displaystyle \ 175        \displaystyle \ \ \ \ \ \ \ 40
 \displaystyle \ 225        \displaystyle \ \ \ \ \ \ \ 48
 \displaystyle \ 250        \displaystyle \ \ \ \ \ \ \ 53
 \displaystyle \ 550      \displaystyle \ \ \ \ \ 101
 \displaystyle \ 575      \displaystyle \ \ \ \ \ 105
 \displaystyle \ 850      \displaystyle \ \ \ \ \ 146
 \displaystyle \ 975      \displaystyle \ \ \ \ \ 164
1375      \displaystyle \ \ \ \ \ 220
1475      \displaystyle \ \ \ \ \ 233
1775      \displaystyle \ \ \ \ \ 274
1875      \displaystyle \ \ \ \ \ 287
1900      \displaystyle \ \ \ \ \ 290
2000      \displaystyle \ \ \ \ \ 303
2100      \displaystyle \ \ \ \ \ 317
2175      \displaystyle \ \ \ \ \ 326
2725      \displaystyle \ \ \ \ \ 397
2775      \displaystyle \ \ \ \ \ 403
2800      \displaystyle \ \ \ \ \ 407
2825      \displaystyle \ \ \ \ \ 410
2850      \displaystyle \ \ \ \ \ 413
2900      \displaystyle \ \ \ \ \ 419
2925      \displaystyle \ \ \ \ \ 422
2975      \displaystyle \ \ \ \ \ 429

____________________________________________________


You may wish to experiment with this approximation formula on your own.
 
Last edited:
Top