I discovered a relatively good approximation formula for π(x), which gives the exact number of prime numbers
less than or equal to the value of x. For example, π(10)=4, because there are four prime numbers less than
or equal to 10. My formula works best in the interval of about 10≤x≤3,000.
Approximation formula: Ceiling function of [log10(x2)x]
I cherry-picked multiples of 25 for certain x-values, where each approximation formula's value equals the corresponding π(x) value.
x | Approx. formula value = π(x)
-------------------------------------------
25 9
50 15
100 25
125 30
150 35
175 40
225 48
250 53
550 101
575 105
850 146
975 164
1375 220
1475 233
1775 274
1875 287
1900 290
2000 303
2100 317
2175 326
2725 397
2775 403
2800 407
2825 410
2850 413
2900 419
2925 422
2975 429
____________________________________________________
You may wish to experiment with this approximation formula on your own.
less than or equal to the value of x. For example, π(10)=4, because there are four prime numbers less than
or equal to 10. My formula works best in the interval of about 10≤x≤3,000.
Approximation formula: Ceiling function of [log10(x2)x]
I cherry-picked multiples of 25 for certain x-values, where each approximation formula's value equals the corresponding π(x) value.
x | Approx. formula value = π(x)
-------------------------------------------
25 9
50 15
100 25
125 30
150 35
175 40
225 48
250 53
550 101
575 105
850 146
975 164
1375 220
1475 233
1775 274
1875 287
1900 290
2000 303
2100 317
2175 326
2725 397
2775 403
2800 407
2825 410
2850 413
2900 419
2925 422
2975 429
____________________________________________________
You may wish to experiment with this approximation formula on your own.
Last edited: