Normed real space X, f in X*, ||f|| = 1, sigma in (0, 1), C:= {x in X : f(x) >= ...

theMR

New member
Joined
May 1, 2017
Messages
9
Normed real space X, f in X*, ||f|| = 1, sigma in (0, 1), C:= {x in X : f(x) >= ...

Let X be a real normed space, \(\displaystyle f\, \in\, X*,\, \|\, f \,\| \, =\, 1,\) and let \(\displaystyle \sigma\, \in \, (0,\, 1).\)

\(\displaystyle C\, :=\, \left\{x\, \in\, X\, :\, f(x)\, \geq\, \sigma\, \|\,x\, \| \right\}\)

Prove that:

\(\displaystyle C^{\circ}\, =\, \left\{x\, \in\, X\, :\, f(x)\, >\, \sigma\,\|\,x\, \|\right\}\)



Can you help me with this one?
 

Attachments

  • Screen Shot 2017-05-01 at 19.43.34.png
    Screen Shot 2017-05-01 at 19.43.34.png
    21.2 KB · Views: 4
Last edited by a moderator:
Top