Hi,
I have got the following matrix. I have found the eigen values but in some eq x, y & z terms are vanishing, so how to find the value of eigen vector??? Also why we have to do normalization??
\(\displaystyle \mbox{Given: }\, A\, =\, \left[\begin{array}{ccc}1&1&0\\1&1&0\\0&0&1\end{array} \right]\)
\(\displaystyle A\, -\, \lambda\, I\, =\, 0:\)
. . . . .\(\displaystyle \left[\begin{array}{ccc}1&1&0\\1&1&0\\0&0&1\end{array} \right]\, -\, \left[\begin{array}{ccc}\lambda &0&0\\0& \lambda & 0\\0&0& \lambda \end{array}\right]\, =\, 0\)
. . . . .\(\displaystyle \left[\begin{array}{ccc}1-\lambda &1&0\\1&1-\lambda & 0\\0&0&1-\lambda \end{array}\right]\, =\, 0\)
. . . . .\(\displaystyle (1\, -\, \lambda)\left|\begin{array}{cc}1-\lambda & 0\\0&1-\lambda\end{array}\right|\, -\, 1\left|\begin{array}{cc}1&0\\0&1-\lambda \end{array}\right|\, +\, 0\, =\, 0\)
. . . . .\(\displaystyle (1\, -\, \lambda)\, (1\, -\, \lambda)^2\, -\, (1\, -\, \lambda)\, =\, 0\)
Taking the common factor of \(\displaystyle (1\, -\, \lambda)\) out front:
. . . . .\(\displaystyle (1\, -\, \lambda)\left[(1\, -\, \lambda)^2\, -\, 1\right]\, =\, 0\)
First eigen value \(\displaystyle \lambda_1\, =\, 1\)
Now consider:
. . . . .\(\displaystyle \left[(1\, -\, \lambda)^2\, -\, 1\right]\, =\, 0\)
. . . . .\(\displaystyle 1\, -\, 2\lambda \, +\, {\lambda}^2\, -\, 1\, =\, 0\)
. . . . .\(\displaystyle -2\lambda\, +\, {\lambda}^2\, =\, 0\)
. . . . .\(\displaystyle \lambda\, (\lambda\, -\, 2)\, =\, 0\)
. . . . .\(\displaystyle \lambda_2\, =\, 0\, \mbox{ and }\, \lambda_3\, =\, 2\)
For \(\displaystyle \lambda_1\, =\, 1,\, Ax\, =\, \lambda\, \cdot\, x\, \cdot\, I\)
. . . . .\(\displaystyle \left[\begin{array}{ccc}1&1&0\\1&1&0\\0&0&1\end{array} \right]\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\, =\, 1\, \cdot\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\)
. . . . .\(\displaystyle \begin{array}{lcr}x\, +\, y\, =\, x\, &\,&\mbox{eqn}\, (1)\\x\, +\, y\, =\, y\, &\,&\mbox{eqn}\, (2)\\z\, =\, z\, &\,&\mbox{eqn}\, (3)\end{array}\)
Above x vanishes in eq(1), y vanishes in eq(2) & z vanishes in eq(3).
What is the value of μ1?????
For \(\displaystyle \lambda_2\, =\, 0:\)
. . . . .\(\displaystyle \left[\begin{array}{ccc}1&1&0\\1&1&0\\0&0&1\end{array} \right]\, \cdot\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\, =\, 0\, \cdot\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\)
. . . . .\(\displaystyle \begin{array}{lcr}x\, +\, y\, =\, 0&\,&\mbox{eqn}\, (4)\\x\, +\, y\, =\, 0&\,&\mbox{eqn}\, (5)\\z\, =\, 0&\,&\mbox{eqn}\, (6)\end{array}\)
In my view, it should be:
. . . . .\(\displaystyle \mu\, =\, \left[\begin{array}{c}-1\\-1\\0\end{array}\right]\)
but teacher has got different answer. In addition to this he has done normalization, please guide me what is the need for normalization
For \(\displaystyle \lambda\, =\, 2:\)
. . . . .\(\displaystyle \left[\begin{array}{ccc}1&1&0\\1&1&0\\0&0&1\end{array} \right]\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\, =\, 2\, \cdot\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\)
. . . . .\(\displaystyle \begin{array}{lcr}x\, +\, y\, =\, 2x&\,&\mbox{eqn}\, (7)\\x\, =\, -y&\,&\,\\x\, +\, y\, =\, 2y&\,&\mbox{eqn}\, (8)\\y\, =\, x&\,&\,\\z\, =\, 2z&\,&\mbox{eqn}\, (9)\end{array}\)
Therefore:
. . . . .\(\displaystyle \mu\, =\, \left[\begin{array}{c}-1\\1\\0\end{array} \right]\)
Why we have to normalize the vector?
Somebody please guide me.
Zulfi.
I have got the following matrix. I have found the eigen values but in some eq x, y & z terms are vanishing, so how to find the value of eigen vector??? Also why we have to do normalization??
\(\displaystyle \mbox{Given: }\, A\, =\, \left[\begin{array}{ccc}1&1&0\\1&1&0\\0&0&1\end{array} \right]\)
\(\displaystyle A\, -\, \lambda\, I\, =\, 0:\)
. . . . .\(\displaystyle \left[\begin{array}{ccc}1&1&0\\1&1&0\\0&0&1\end{array} \right]\, -\, \left[\begin{array}{ccc}\lambda &0&0\\0& \lambda & 0\\0&0& \lambda \end{array}\right]\, =\, 0\)
. . . . .\(\displaystyle \left[\begin{array}{ccc}1-\lambda &1&0\\1&1-\lambda & 0\\0&0&1-\lambda \end{array}\right]\, =\, 0\)
. . . . .\(\displaystyle (1\, -\, \lambda)\left|\begin{array}{cc}1-\lambda & 0\\0&1-\lambda\end{array}\right|\, -\, 1\left|\begin{array}{cc}1&0\\0&1-\lambda \end{array}\right|\, +\, 0\, =\, 0\)
. . . . .\(\displaystyle (1\, -\, \lambda)\, (1\, -\, \lambda)^2\, -\, (1\, -\, \lambda)\, =\, 0\)
Taking the common factor of \(\displaystyle (1\, -\, \lambda)\) out front:
. . . . .\(\displaystyle (1\, -\, \lambda)\left[(1\, -\, \lambda)^2\, -\, 1\right]\, =\, 0\)
First eigen value \(\displaystyle \lambda_1\, =\, 1\)
Now consider:
. . . . .\(\displaystyle \left[(1\, -\, \lambda)^2\, -\, 1\right]\, =\, 0\)
. . . . .\(\displaystyle 1\, -\, 2\lambda \, +\, {\lambda}^2\, -\, 1\, =\, 0\)
. . . . .\(\displaystyle -2\lambda\, +\, {\lambda}^2\, =\, 0\)
. . . . .\(\displaystyle \lambda\, (\lambda\, -\, 2)\, =\, 0\)
. . . . .\(\displaystyle \lambda_2\, =\, 0\, \mbox{ and }\, \lambda_3\, =\, 2\)
For \(\displaystyle \lambda_1\, =\, 1,\, Ax\, =\, \lambda\, \cdot\, x\, \cdot\, I\)
. . . . .\(\displaystyle \left[\begin{array}{ccc}1&1&0\\1&1&0\\0&0&1\end{array} \right]\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\, =\, 1\, \cdot\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\)
. . . . .\(\displaystyle \begin{array}{lcr}x\, +\, y\, =\, x\, &\,&\mbox{eqn}\, (1)\\x\, +\, y\, =\, y\, &\,&\mbox{eqn}\, (2)\\z\, =\, z\, &\,&\mbox{eqn}\, (3)\end{array}\)
Above x vanishes in eq(1), y vanishes in eq(2) & z vanishes in eq(3).
What is the value of μ1?????
For \(\displaystyle \lambda_2\, =\, 0:\)
. . . . .\(\displaystyle \left[\begin{array}{ccc}1&1&0\\1&1&0\\0&0&1\end{array} \right]\, \cdot\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\, =\, 0\, \cdot\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\)
. . . . .\(\displaystyle \begin{array}{lcr}x\, +\, y\, =\, 0&\,&\mbox{eqn}\, (4)\\x\, +\, y\, =\, 0&\,&\mbox{eqn}\, (5)\\z\, =\, 0&\,&\mbox{eqn}\, (6)\end{array}\)
In my view, it should be:
. . . . .\(\displaystyle \mu\, =\, \left[\begin{array}{c}-1\\-1\\0\end{array}\right]\)
but teacher has got different answer. In addition to this he has done normalization, please guide me what is the need for normalization
For \(\displaystyle \lambda\, =\, 2:\)
. . . . .\(\displaystyle \left[\begin{array}{ccc}1&1&0\\1&1&0\\0&0&1\end{array} \right]\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\, =\, 2\, \cdot\, \left[\begin{array}{c}x\\y\\z\end{array}\right]\)
. . . . .\(\displaystyle \begin{array}{lcr}x\, +\, y\, =\, 2x&\,&\mbox{eqn}\, (7)\\x\, =\, -y&\,&\,\\x\, +\, y\, =\, 2y&\,&\mbox{eqn}\, (8)\\y\, =\, x&\,&\,\\z\, =\, 2z&\,&\mbox{eqn}\, (9)\end{array}\)
Therefore:
. . . . .\(\displaystyle \mu\, =\, \left[\begin{array}{c}-1\\1\\0\end{array} \right]\)
Why we have to normalize the vector?
Somebody please guide me.
Zulfi.
Last edited by a moderator: