Nonzero matrix that is 2 by 2

What you speak of is called a nilpotent matrix.

The matrices have the property : \(\displaystyle A^k = 0\) where A is a square matrix and k is a positive integer.

A matrix is nilpotent if it is a triangular matrix. Meaning all the entries below or above a diagonal of zeros is also zero.

So for your problem:

\(\displaystyle Let ~\[A=\left[ {\begin{array}{cc} 0 & 1 \\ 0 & 0 \\\end{array} } \right]\]\)

or

\(\displaystyle Let ~\[A=\left[ {\begin{array}{cc} 0 & 0 \\ 1 & 0 \\\end{array} } \right]\]\)

are two solutions.

Obviously the 1 can be any constant you want.
 
Hello, msjoharia!

Here are a few more . . .


Find a nonzero 2 x 2 matrix A such that AA has all zero entries.

\(\displaystyle \text{Let }\,A \:=\:\begin{pmatrix}a^&b\\c&d\end{pmatrix}\;\text{such that }\,A\!\cdot\! A \:=\:0\)

\(\displaystyle \text{We have: }\:\begin{pmatrix}a&b\\c&d\end{pmatrix}\begin{pmatrix}a&b\\c&d\end{pmatrix} \:=\:\begin{pmatrix}0&0\\0&0\end{pmatrix}\)


\(\displaystyle \text{Hence: }\:\begin{Bmatrix} a^2 + bc \:=\:0 & [1] && ab + bd \:=\: 0 & [2] \\ \\ ac+cd \:=\: 0 & [3] && bc+d^2 \:=\: 0 & [4] \end{Bmatrix}\)


\(\displaystyle \text{From [2]: }\:b(a+d) \:=\:0\)
\(\displaystyle \text{From [3]: }\:c(a+d) \:=\:0\)

\(\displaystyle \text{If }b = 0\text{ or }c = 0\text{, then all the elements are zero.}\)


\(\displaystyle \text{So we have: }\:a+d \:=\:0 \quad\Rightarrow\quad d \:=\:-a\)

\(\displaystyle \text{Then [4] becomes: }\:bc+a^2 \:=\:0\text{, identital to [1].}\)
. . \(\displaystyle \text{and we have: }\:bc \:=\:-a^2\)

\(\displaystyle \text{For simplicity, let }b = \pm a\,\text{ and }\,c = \mp a\)


\(\displaystyle \text{Therefore: }\:A \;=\;\begin{pmatrix}a & \pm a \\ \mp a & -a \end{pmatrix} \;=\;a\begin{pmatrix}1 & \pm 1 \\ \mp1 & -1 \end{pmatrix}\;\text{ for }a \ne 0\)


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~


Of course, there are many other variations.


From \(\displaystyle bc = -a^2\), we can have: .\(\displaystyle \begin{Bmatrix}b &=& \pm a^2 \\ c &=& \mp1\end{Bmatrix}\)

. . \(\displaystyle \text{Then: }\:A \;=\;\begin{pmatrix}a & \pm a^2 \\ \mp1 & -a \end{pmatrix}\)



\(\displaystyle \text{If }a\text{ is composite: }\,a \,=\,p\!\cdot\!q,\,\text{ there are more variations.}\)

. . \(\displaystyle \text{For example: }\:A \;=\;\begin{pmatrix}pq & \pm p^2q \\ \mp q & -pq\end{pmatrix} \;=\;q\begin{pmatrix}p & \pm p^2 \\ \mp1 & -p\end{pmatrix}\)
 
Would a matrix [ 5 -25 ] [ 5 5]
[ 2 -10 ][ 1 1]


work?


When I mulitplied I got zero as the result
 
Last edited:
Hello, msjoharia!


\(\displaystyle \text{Would a matrix: }\,\begin{bmatrix}5&\text{-}25 \\ 5&5\end{bmatrix}\,\begin{bmatrix}5&5\\1&1\end{bmatrix}\:\text{ work?}\)

\(\displaystyle \text{When I multiplied, I got zero as the result.}\)

Yes . . .

. . if the question was: "Find two different matrices \(\displaystyle A\) and \(\displaystyle B\) whose product is zero."

But that wasn't the question, was it?
 
Top