Find the root of the function y = x
3 + 4x
2 + 7 in the vicinity of x = −4 correct to 5
decimal places.
I have got so far:
Let f(x)= x^3+4x^2+7
f'(x)= 3x^2+8x
Xn+1= Xn-f(xn)/f'(xn) => Xn+1= Xn-x^3-4x^2+7/3x^2-8x
x=-4, -4-(-4^3+4x-4^2+7)/(3x-4^2-8x-4)= -4.0875
On the right track?
3 + 4x
2 + 7 in the vicinity of x = −4 correct to 5
decimal places.
I have got so far:
Let f(x)= x^3+4x^2+7
f'(x)= 3x^2+8x
Xn+1= Xn-f(xn)/f'(xn) => Xn+1= Xn-x^3-4x^2+7/3x^2-8x
x=-4, -4-(-4^3+4x-4^2+7)/(3x-4^2-8x-4)= -4.0875
On the right track?