Needing help solving ( 1 + x^3)dy/dx + 5(x^2)y = e^x

mrgthiru

New member
Joined
Jun 18, 2007
Messages
13
solving this Differential Equ :(

( 1 + x^3)dy/dx + 5(x^2)y = e^x

Kind Regards
GTHIRU
 
This is a particular case of general equation:

y' + y*p(x) = g(x)

you need to multiply both sides by an integarting factor - e^[Q(x)] - where,

Q(x) = [integral]P(x) dx

Then th left-hand-side will become a "perfect integral".

Upon integrating both sides

y * e^[Q(x)] = [integral]{g * e^[Q(x)]} dx

It should be straight-forward.
 
Re: Could anyone help me in solving this Differential Equ

Hello, mrgthiru!

Subhotosh is partly correct . . . An integrating factor is required.
. . But the integration will be difficult.


Solve: \(\displaystyle \:(1\,+\,x^3)\frac{dy}{dx}\,+\,5x^2y \:= \:e^x\)

Divide by \(\displaystyle (1\,+\,x^3):\;\;\L\frac{dy}{dx} \,+\,\frac{5x^2}{1\,+\,x^3}\cdot y \:=\:e^x\)

\(\displaystyle \L I \;=\;e^{\int\frac{5x^2}{1+x^3}dx} \;=\;e^{\frac{5}{3}\ln(1+x^3)} \;=\;e^{\ln(1+x^3)^{\frac{5}{3}}}\;=\;(1\,+\,x^3)^{\frac{5}{3}}\)

\(\displaystyle \text{Multiply through by }I:\;\;\L(1\,+\,x^3)^{\frac{5}{3}}\cdot\frac{dy}{dx}\,+\,\frac{5x^2}{1\,+\,x^3}\cdot(1\,+\,x^3)^{\frac{5}{3}}\cdot y \;=\;e^x(1\,+\,x^3)^{\frac{5}{3}}\)

. . . \(\displaystyle \L(1\,+\,x^3)^{\frac{5}{3}}\cdot\frac{dy}{dx}\:+\:5x^2(1\,+\,x^3)^{\frac{2}{3}}y \;=\;e^x(1\,+\,x^3)^{\frac{5}{3}}\)


\(\displaystyle \text{We have: }\L\:\frac{d}{dx}\left[(1\,+\,x^3)^{\frac{5}{3}}y\right] \;=\;e^x(1\,+\,x^3)^{\frac{5}{3}}\)


\(\displaystyle \text{Integrate: }\L\:(1\,+\,x^3)^{\frac{5}{3}}y \;=\;\underbrace{\int e^x(1\,+\,x^3)^{\frac{5}{3}}\,dx}_{\text{Good luck!}}\)


Welcome aboard, Subhotosh! . . . Good to see you here!

 
Hi Soroban,

Thanks for ur help buddy....
Do i have to integrate this further....

(1+x^3)^(5/3) y = ∫ e^(x) (1+x^3)^(5/3) dx ????

Please advice... :(
GThiru
 
\(\displaystyle \L\ \int e^x(1 + x^3)^{\frac{5}{3}} \ dx\) = \(\displaystyle \L\ e^x(1 + x^3)^{\frac{5}{3}} - \frac{5}{6}\ e^x(1 + x^3)^2 + \frac{5}{6}\ e^x + \frac{5}{6}\ \int e^x x^3\ dx\)

\(\displaystyle \L\ \int e^x x^3\ dx = e^x(x^3 - 3x^2 + 6x - 6)\)
 
Top