Hello, MBH_14!
Find the cubic polynomial with a local maximum at (2,8) and a local minimum at (5,1).
Let the cubic be:
.\(\displaystyle f(x)\:=\:ax^3\,+\,bx^2\,+\,cx\,+\, d\)
The point (2,8) is on the cubic; that is: \(\displaystyle f(2)\,=\,8\)
. . \(\displaystyle f(2)\:=\:a\cdot2^3\,+\,b\cdot2^2\,+\,c\cdot2\,+\,d\:=\:8\qquad\Rightarrow\qquad 8a\,+\,4b\,+\,2c\,+\,d\:=\:8\)
.[1]
The point (5,1) is on the cubic; that is, \(\displaystyle f(5)\,=\,1\)
. . \(\displaystyle f(5)\:=\:a\cdot5^3\,+\,b\cdot5^2\,+\,c\cdot5\,+\,d\:=\:1\qquad\Rightarrow\qquad125a\,+\,25b\,+\,5c\,+\,d\:=\:1\)
.[2]
There are extremes at (2,8) and (5,1).
. . Hence, when \(\displaystyle x = 2\) and \(\displaystyle x = 5\), the derivative is zero.
. . That is: \(\displaystyle f'(2)\,=\,0\) and \(\displaystyle f'(5)\,=\,0\)
The derivative is:
.\(\displaystyle f'(x)\:=\:3ax^2 + 2bx + c\)
. . At \(\displaystyle x = 2:\;\;f'(2)\:=\:3a\cdot2^2\,+\,2b\cdot2\,+\,c\:=\:0\qquad\Rightarrow\qquad 12a\,+\,4b\,+\,c\:=\:0\)
. [3]
. . At \(\displaystyle x = 5:\;\;f'(5)\:=\:3a\cdot5^2\,+\,2b\cdot6\,+\,c\:=\:0\qquad\Rightarrow\qquad 75a\,+\,10b\,+\,c\:=\:0\)
. [4]
Solve the system of equations for \(\displaystyle a,\,b,\,c,\,d.\)