Hello, josh123!
Solve: \(\displaystyle \;\frac{x\,-\,2}{x\,-\,1}\;<\;3\)
\(\displaystyle a)\; 2\,<\,x\,<\,\frac{5}{2}\;\;b)\;\frac{1}{2}\,<\,x\,<\,1\;\;c)\;2\,<\,x\,<\,\frac{7}{2}\;\;d)\;-\frac{5}{2}\,<\,x\,<\,-2\;\;e)\;x\,<\,2\) or \(\displaystyle x\,>\,\frac{5}{2}\)
\(\displaystyle f)\;x\,<\,\frac{1}{2}\) or \(\displaystyle x\,>\,1\;\;g)\;x\,<\,2\) or \(\displaystyle x\,>\,\frac{7}{2}\;\;h)\;x\,<\,-\frac{5}{2}\) or \(\displaystyle x\,>\,-2\;\;i)\;\text{none of these}\)
There is an elementary approach to these problems.
. . It may take longer, but the reasoning is simple.
First, solve the <u>equality</u>: \(\displaystyle \;\frac{x\,-\,2}{x\,-\,1}\:=\:3\)
. . We get: \(\displaystyle \;x\,-\,2\:=\:3x\,-\,3\;\;\Rightarrow\;\;x\,=\,\frac{1}{2}\)
Also, we note that "something funny" happens when \(\displaystyle x\,=\,1\).
. . We get 0 in the denominator.
We have two values of \(\displaystyle x\) to test: \(\displaystyle \;\frac{1}{2}\) and \(\displaystyle 1\).
. . The two values divide the number line into <u>three</u> intervals.
. . . - - - - + - - + - - - - - -
. . . . . . . .\(\displaystyle \frac{1}{2}\;\;\;1\)
. . Test a value from each interval in the original inequality.
On the interval \(\displaystyle \left(-\infty,\,\frac{1}{2}\right)\), pick a value, say, \(\displaystyle x = 0\)
. . We have: \(\displaystyle \;\frac{0\,-\,2}{0\,-\,1}\:=\:\frac{-2}{-1}\;=\;2\)
. . Does this satisfy the inequality? (Is it less than 3?) . . . yes!
. . Part of the answer is: \(\displaystyle \;x\,<\,\frac{1}{2}\)
On the interval \(\displaystyle \left(\frac{1}{2},\,1\right)\), pick a value, say, \(\displaystyle x = \frac{3}{4}\)
. . We have: \(\displaystyle \;\frac{\frac{3}{4}-2}{\frac{3}{4}-1}\:=\:\frac{-\frac{5}{4}}{-\frac{1}{4}}\:=\:5\)
. . Does this satisfy the inequality? (Is it less than 3?) . . . no.
. . So this interval is <u>not</u> part of the answer.
On the interval \(\displaystyle (1,\,\infty)\), pick a value, say, \(\displaystyle x=2\)
. . We have: \(\displaystyle \;\frac{2-2}{2-1}\,=\,0\)
. . Does this satisfy the inequality? (Is it less than 3?) . . . yes!
. . Part of the answer is: \(\displaystyle \;x\,>\,1\)
The answer is: \(\displaystyle \;x\,<\,\frac{1}{2}\) or \(\displaystyle x\,>\,1\) . . . answer (f)