Hello, jordan83!
You're expected to know the Compound Angle Formula:
.\(\displaystyle \tan(A\,+\,B)\;=\;\frac{\tan(A)\,+\,\tan(B)}{1\,-\,\tan(A)\tan(B)}\)
And the Double Angle formula:
.\(\displaystyle \tan(2A)\;=\;\frac{2\cdot\tan(A)}{1\,-\,\tan^2(A)}\)
\(\displaystyle \tan(3\theta)\:=\:\frac{3\cdot\tan(\theta)\,-\,\tan^3(\theta)}{1\,-\,3\cdot\tan^2(\theta)}\)
We have:
.\(\displaystyle \tan(2\theta\,+\,\theta)\;=\;\frac{\tan(2\theta)\,+\,\tan(\theta)}{1\,-\,\tan(2\theta)\cdot\tan(\theta)}\;=\;\L\frac{\frac{2\cdot\tan(\theta)}{1\,-\,\tan^2(\theta)}\,+\,\tan(\theta)}{1\,-\,\frac{2\cdot\tan(\theta)}{1\,-\,\tan^2(\theta)}\cdot\tan(\theta)}\)
Multiply top and bottom by \(\displaystyle [1- \tan^2(\theta)]:\;\;\frac{2\cdot\tan(\theta)\,+\,\tan(\theta)[1\,-\,\tan^2(\theta)]}{[1\,-\,\tan^2(\theta)]\,-\,2\cdot\tan(\theta)\cdot\tan(\theta)}\)
. . . \(\displaystyle =\;\frac{2\cdot\tan(\theta)\,+\,\tan(\theta)\,-\,\tan^3(\theta)}{1\,-\,\tan^2(\theta)\,-\,2\cdot\tan^2(\theta)}\;=\;\frac{3\cdot\tan(\theta)\,-\,\tan^3(\theta)}{1\,-\,3\cdot\tan^2(\theta)}\)