Need some help with trig identities!

jordan83

New member
Joined
Nov 9, 2005
Messages
15
tan(3theta) = 3tan(theta)-tan^3(theta) / 1-3tan^2(theta)

cos(alpha-beta)cos(alpha+beta) = cos^2(alpha) - sin^2(beta)

ln = natural log

ln|1+cos(theta)| + ln|1-cos(theta)| = 2ln|sin(theta)|


I need to prove these to be equal. These are the ones im stuck on on my worksheet thanks
 
jordan83 said:
tan(3theta) = 3tan(theta)-tan^3(theta) / 1-3tan^2(theta)

cos(alpha-beta)cos(alpha+beta) = cos^2(alpha) - sin^2(beta)

ln = natural log

ln|1+cos(theta)| + ln|1-cos(theta)| = 2ln|sin(theta)|

Here's some good hints:

Use the laws of logs. Remember, ln(a)+ln(b)=ln((a)(b))\displaystyle ln(a)+ln(b)=ln((a)\cdot(b))

Also, (1+cos(θ))(1cos(θ))=1cos2(θ)=sin2(θ).\displaystyle (1+cos(\theta))(1-cos(\theta))=1-cos^{2}(\theta)=sin^{2}(\theta).

Another log law, ln(ab)=(b)(ln(a))\displaystyle ln(a^{b})=(b)\cdot(ln(a))



I need to prove these to be equal. These are the ones im stuck on on my worksheet thanks
 
Hello, jordan83!

You're expected to know the Compound Angle Formula: .tan(A+B)  =  tan(A)+tan(B)1tan(A)tan(B)\displaystyle \tan(A\,+\,B)\;=\;\frac{\tan(A)\,+\,\tan(B)}{1\,-\,\tan(A)\tan(B)}

And the Double Angle formula: .tan(2A)  =  2tan(A)1tan2(A)\displaystyle \tan(2A)\;=\;\frac{2\cdot\tan(A)}{1\,-\,\tan^2(A)}

We have: .\(\displaystyle \tan(2\theta\,+\,\theta)\;=\;\frac{\tan(2\theta)\,+\,\tan(\theta)}{1\,-\,\tan(2\theta)\cdot\tan(\theta)}\;=\;\L\frac{\frac{2\cdot\tan(\theta)}{1\,-\,\tan^2(\theta)}\,+\,\tan(\theta)}{1\,-\,\frac{2\cdot\tan(\theta)}{1\,-\,\tan^2(\theta)}\cdot\tan(\theta)}\)

Multiply top and bottom by [1tan2(θ)]:    2tan(θ)+tan(θ)[1tan2(θ)][1tan2(θ)]2tan(θ)tan(θ)\displaystyle [1- \tan^2(\theta)]:\;\;\frac{2\cdot\tan(\theta)\,+\,\tan(\theta)[1\,-\,\tan^2(\theta)]}{[1\,-\,\tan^2(\theta)]\,-\,2\cdot\tan(\theta)\cdot\tan(\theta)}


. . . =  2tan(θ)+tan(θ)tan3(θ)1tan2(θ)2tan2(θ)  =  3tan(θ)tan3(θ)13tan2(θ)\displaystyle =\;\frac{2\cdot\tan(\theta)\,+\,\tan(\theta)\,-\,\tan^3(\theta)}{1\,-\,\tan^2(\theta)\,-\,2\cdot\tan^2(\theta)}\;=\;\frac{3\cdot\tan(\theta)\,-\,\tan^3(\theta)}{1\,-\,3\cdot\tan^2(\theta)}
 
Top