If \(\displaystyle z= \sqrt{x^2+ y^2}\) the \(\displaystyle z^2= x^2+ y^2\). A standard parameterization for something involving \(\displaystyle x^2+ y^2\) is \(\displaystyle x= r\cos(\theta)\), \(\displaystyle y= r\sin(\theta)\) because then \(\displaystyle z= x^2+ y^2= r^2 \cos^2(\theta)+ r^2\sin^2(\theta)= r^2\). We can write the surface as the vector equation \(\displaystyle x\vec{i}+ y\vec{j}+ z\vec{k}= r\cos(\theta)\vec{i}+ r\sin(\theta)\vec{j}+ r^2\vec{k}\).
The derivative of that with respect to r is \(\displaystyle \cos(\theta)\vec{i}+ \sin(\theta)\vec{j}+ 2r\vec{k}\). The derivative with respect to \(\displaystyle \theta\) is \(\displaystyle -r\sin(\theta)\vec{i}+ r\cos(\theta)\vec{j}\). The vector differential of surface area, normal to the surface and with length the surface area differential is given by the cross product of those two vectors:
\(\displaystyle \left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\-r\sin(\theta) & r\cos(\theta) & 0 \\ \cos(\theta) & \sin(\theta) & 2r \end{array}\right|= 2r\cos(\theta)\vec{i}+ 2r\sin(\theta)\vec{j}+ r^2\vec{k}\)