Hello, ryan_kidz!
I looked for a clever way to answer this one, but failed . . .
. . I had to resort to Brute Force.
If
x 2 = x + 3 \displaystyle x^2\,=\,x\,+\,3 x 2 = x + 3 , then \(\displaystyle x^3\,=\.?\)
We have the quadratic:
. x 2 − x − 3 = 0 \displaystyle x^2\,-\,x\,-\,3 \:= \:0 x 2 − x − 3 = 0
Using the Quadratic Formula:
. x = 1 ± 13 2 \displaystyle \displaystyle{x \:= \;\frac{1\, \pm\, \sqrt{13}}{2}} x = 2 1 ± 1 3
Then:
. x = ( 1 ± 13 2 ) 3 = 1 ± 3 13 + 39 ± 13 13 8 = 40 ± 16 13 8 = 5 ± 2 13 \displaystyle x \:= \:\left(\frac{1\,\pm\,\sqrt{13}}{2}\right)^3 \;= \;\frac{1\,\pm\,3\sqrt{13}\,+\,39\,\pm\,13\sqrt{13}}{8} \;= \;\frac{40\,\pm\,16\sqrt{13}}{8} \;= \;5\,\pm\,2\sqrt{13} x = ( 2 1 ± 1 3 ) 3 = 8 1 ± 3 1 3 + 3 9 ± 1 3 1 3 = 8 4 0 ± 1 6 1 3 = 5 ± 2 1 3
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Blast! . . . I just saw the follow-up postings.
. . What a
stupid problem!
. . There are
dozens of correct answers . . .
I had that answer, too, but I thought it was too silly.
We have:
. x 2 = x + 3 \displaystyle x^2 \:= \:x\,+\,3 x 2 = x + 3
Multiply by
x : x 3 = x 2 + 3 x \displaystyle x:\;\;x^3 \:= \:x^2\,+\,3x x : x 3 = x 2 + 3 x
Since
x 2 = x + 3 \displaystyle x^2 \:= \:x\,+\,3 x 2 = x + 3 , we have:
. . . \(\displaystyle x^3 \:= \
x\,+\,3)\,+\,3x \:= \:4x\,+\,3\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Here are some <u>other</u> correct answers . . .
Since
x 2 = x + 3 \displaystyle x^2 \:= \:x\,+\,3 x 2 = x + 3 , raise both sides to the power
3 2 : \displaystyle \frac{3}{2}: 2 3 :
. . . \(\displaystyle x^3 \:= \
x + 3)^{\frac{3}{2}}\)
Since
x = x 2 − 3 \displaystyle x \:= \:x^2\,-\,3 x = x 2 − 3 , cube both sides:
. \(\displaystyle x^3 \:= \
x^2\,-\,3)^3\)
We have:
. x 2 = x + 3 \displaystyle x^2 \:= \:x\,+\,3 x 2 = x + 3 .
. Divide both sides by
x : x = x + 3 x \displaystyle x:\;\;x \:= \:\frac{x\,+\,3}{x} x : x = x x + 3
. . Now cube both sides:
. x 3 = ( x + 3 x ) 3 \displaystyle x^3 \:= \:\left(\frac{x\,+\,3}{x}\right)^3 x 3 = ( x x + 3 ) 3