Hello, ryan_kidz!
I looked for a clever way to answer this one, but failed . . .
. . I had to resort to Brute Force.
If \(\displaystyle x^2\,=\,x\,+\,3\), then \(\displaystyle x^3\,=\.?\)
We have the quadratic:
.\(\displaystyle x^2\,-\,x\,-\,3 \:= \:0\)
Using the Quadratic Formula:
.\(\displaystyle \displaystyle{x \:= \;\frac{1\, \pm\, \sqrt{13}}{2}}\)
Then:
. \(\displaystyle x \:= \:\left(\frac{1\,\pm\,\sqrt{13}}{2}\right)^3 \;= \;\frac{1\,\pm\,3\sqrt{13}\,+\,39\,\pm\,13\sqrt{13}}{8} \;= \;\frac{40\,\pm\,16\sqrt{13}}{8} \;= \;5\,\pm\,2\sqrt{13}\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Blast! . . . I just saw the follow-up postings.
. . What a
stupid problem!
. . There are
dozens of correct answers . . .
I had that answer, too, but I thought it was too silly.
We have:
.\(\displaystyle x^2 \:= \:x\,+\,3\)
Multiply by \(\displaystyle x:\;\;x^3 \:= \:x^2\,+\,3x\)
Since \(\displaystyle x^2 \:= \:x\,+\,3\), we have:
. . . \(\displaystyle x^3 \:= \
x\,+\,3)\,+\,3x \:= \:4x\,+\,3\)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Here are some <u>other</u> correct answers . . .
Since \(\displaystyle x^2 \:= \:x\,+\,3\), raise both sides to the power \(\displaystyle \frac{3}{2}:\)
. . . \(\displaystyle x^3 \:= \
x + 3)^{\frac{3}{2}}\)
Since \(\displaystyle x \:= \:x^2\,-\,3\), cube both sides:
.\(\displaystyle x^3 \:= \
x^2\,-\,3)^3\)
We have:
.\(\displaystyle x^2 \:= \:x\,+\,3\).
.Divide both sides by \(\displaystyle x:\;\;x \:= \:\frac{x\,+\,3}{x}\)
. . Now cube both sides:
.\(\displaystyle x^3 \:= \:\left(\frac{x\,+\,3}{x}\right)^3\)