Please help me with these following problems:
1.)Indicate whether each of the following functions is invertible in the given interval. Explain
a.) sech x on [0,infinity)
b.) cos (ln x) on (O, e^pie]
c.) e^(x^2) on (-1,2]
2.) Evaluate the following limits, justifying your answers. If a limit does not exist explain why.
a.) lim (x--> inf.) (3x^3 +cos x)/(sin x- x^3)
b.) lim (x-->Pie(+)) (tan^-1 (1/(x-Pie)))/(Pie-x)
c.) lim (x--> 0(+)) (sqrt(x+sin x))(ln x)
d.) lim (x--> 1(-)) (cos^-1(x))/(1-x)
3.) give the equation of the line tangent to the curve at the given point.
a.) (y)(tan^-1 x)= x*y at (sqrt(3),0)
b.) ln y= x^2 +(2)*e^x at (0, e^2)
1.)Indicate whether each of the following functions is invertible in the given interval. Explain
a.) sech x on [0,infinity)
b.) cos (ln x) on (O, e^pie]
c.) e^(x^2) on (-1,2]
2.) Evaluate the following limits, justifying your answers. If a limit does not exist explain why.
a.) lim (x--> inf.) (3x^3 +cos x)/(sin x- x^3)
b.) lim (x-->Pie(+)) (tan^-1 (1/(x-Pie)))/(Pie-x)
c.) lim (x--> 0(+)) (sqrt(x+sin x))(ln x)
d.) lim (x--> 1(-)) (cos^-1(x))/(1-x)
3.) give the equation of the line tangent to the curve at the given point.
a.) (y)(tan^-1 x)= x*y at (sqrt(3),0)
b.) ln y= x^2 +(2)*e^x at (0, e^2)