Need Help with solving 2sinx = 1 - 2cosx

mrs1216

New member
Joined
May 30, 2006
Messages
3
I have a test due tomorrow and I have no clue how to do this problem...please help!

Solve 2sinx=1-2cosx in the interval [0, 360)

Any help is appreciated![/list]
 
The first one is easy. Substitute cos(x) = sqrt(1-sin<sup>2</sup>(x)) and solve the resulting quadratic equation. Don't forget to check your results.

The second is a bit more challenging. Let's see what you get.
 
...and then...

2*sin(x) - 1 = -sqrt(1-sin<sup>2</sup>(x))

4*sin<sup>2</sup>(x) - 4*sin(x) + 1 = 1 - sin<sup>2</sup>(x)

Are we getting anywhere?
 
Hello, mrs1216!

Solve: 2sinx  =  12cosx\displaystyle \, 2\sin x\;=\;1\,-\,2\cos x in the interval [0o,360o)\displaystyle [0^o,\,360^o)
A variation on TKHunny's approach . . .

We have: sinx+cosx  =  12\displaystyle \,\sin x\,+\,\cos x\;=\;\frac{1}{2}

Square both sides: sin2x+2sinxcosx+cos2x  =  14\displaystyle \,\sin^2x\,+\,2\sin x\cos x \,+\,\cos^2x\;=\;\frac{1}{4}

    \displaystyle \;\;which simplifies to: sin2x+1=14        sin2x=34\displaystyle \,\sin2x\,+\,1\:=\:\frac{1}{4}\;\;\Rightarrow\;\;\sin2x\:=\:-\frac{3}{4}

Hence, we have: x  =  12arcsin(34)    204.3o,  335.7o\displaystyle \,x\;=\;\frac{1}{2}\arcsin\left(-\frac{3}{4}\right)\;\approx\;204.3^o,\;335.7^o


We must check our answers; squaring can produce extrneous roots.

We find that x=  204.3o\displaystyle \,x\:=\;204.3^o is extraneous

    \displaystyle \;\;and that x=335.7o\displaystyle \,x\:=\:335.7^o is a solution.
 
Top