Hello, mrs1216!
Solve: \(\displaystyle \, 2\sin x\;=\;1\,-\,2\cos x\) in the interval \(\displaystyle [0^o,\,360^o)\)
A variation on TKHunny's approach . . .
We have: \(\displaystyle \,\sin x\,+\,\cos x\;=\;\frac{1}{2}\)
Square both sides: \(\displaystyle \,\sin^2x\,+\,2\sin x\cos x \,+\,\cos^2x\;=\;\frac{1}{4}\)
\(\displaystyle \;\;\)which simplifies to: \(\displaystyle \,\sin2x\,+\,1\:=\:\frac{1}{4}\;\;\Rightarrow\;\;\sin2x\:=\:-\frac{3}{4}\)
Hence, we have: \(\displaystyle \,x\;=\;\frac{1}{2}\arcsin\left(-\frac{3}{4}\right)\;\approx\;204.3^o,\;335.7^o\)
We must check our answers; squaring can produce extrneous roots.
We find that \(\displaystyle \,x\:=\;204.3^o\) is extraneous
\(\displaystyle \;\;\)and that \(\displaystyle \,x\:=\:335.7^o\) is a solution.