\(\displaystyle g(x)\:=\: ax^3\,+\, bx^2\,+\,cx\,+\,d\)
It has a local max at \(\displaystyle (2,4)\), local min at \(\displaystyle (0,0)\).
Find \(\displaystyle a,\;b,\;c,\;d\)
I get: \(\displaystyle g'(x)\:=\:3ax^2\,+\,2bx\,+\,c\)
sub \(\displaystyle x = 2\) and \(\displaystyle x = 0\)
\(\displaystyle c\,=\,0\) and \(\displaystyle a\,=\,-\frac{b}{3}\;\) . . . Good!