Need Help with coefficients of g(x) = ax^3 + bx^2 + cx + d

mace519

New member
Joined
Jul 13, 2006
Messages
5
g(x)= ax^3 + bx^2 + cx + d ; it has a local max at (2,4), local min at (0,0), find a b c d

I get g`(x)= 3ax^2 + 2bx + c
sub x=2 and x=0
c=0 and a= -b/3

not sure what to do after that.
 
Re: Need Help

Hello, mace519!

g(x)=ax3+bx2+cx+d\displaystyle g(x)\:=\: ax^3\,+\, bx^2\,+\,cx\,+\,d
It has a local max at (2,4)\displaystyle (2,4), local min at (0,0)\displaystyle (0,0).
Find a,  b,  c,  d\displaystyle a,\;b,\;c,\;d

I get: g(x)=3ax2+2bx+c\displaystyle g'(x)\:=\:3ax^2\,+\,2bx\,+\,c
sub x=2\displaystyle x = 2 and x=0\displaystyle x = 0
c=0\displaystyle c\,=\,0 and a=b3  \displaystyle a\,=\,-\frac{b}{3}\; . . . Good!
Don't forgot . . . (0,0)\displaystyle (0,0) and (2,4)\displaystyle (2,4) are on the curve, too.

So g(0)=0:    a03+b02+c0+d=0        d=0\displaystyle g(0)\,=\,0:\;\;a\cdot0^3\,+\,b\cdot0^2\,+\,c\cdot0\,+\,d\:=\:0\;\;\Rightarrow\;\;d\,=\,0

And f(2)=4:    a23+b22+c2+d=4\displaystyle \,f(2)\,=\,4:\;\;a\cdot2^3\,+\,b\cdot2^2\,+\,c\cdot2\,+\,d\:=\:4

Since c=0\displaystyle c = 0 and d=0\displaystyle d = 0, we have: 8a+4b=4\displaystyle \,8a\,+\,4b\:=\:4

With this equation and your a=b3\displaystyle a\,=\,-\frac{b}{3}, you can solve for a\displaystyle a and b\displaystyle b.
 
Top