Q: The equation of a straight line through the point of intersection of two given lines:
. . .[a<sub>1</sub>x ] + [b<sub>1</sub>y] + c<sub>1</sub> = 0
. . .[a<sub>2</sub>x] + [b<sub>2</sub>y] + c<sub>2</sub> = 0
...is given by :
. . .((a<sub>1</sub>x) + (b<sub>1</sub>y) + c<sub>1</sub>) + k((a<sub>2</sub>x) + ( b<sub>2</sub>y) + c<sub>2</sub>) = 0
It's the bolded part above that I don't understand.
For this question, I do not have any difficulty in deriving the co-ordinates of the point of intersection, (x<sub>1</sub>, y<sub>1</sub>). They are:
. . .x<sub>1</sub> = ( b<sub>1</sub>c<sub>2</sub> - b<sub>2</sub>c<sub>1</sub>) / ( a<sub>1</sub>b<sub>2</sub> - a<sub>2</sub>b<sub>1</sub>)
. . .y<sub>1</sub> = (c<sub>1</sub>a<sub>2</sub> - c<sub>2</sub>a<sub>1</sub>) / (a<sub>1</sub>b<sub>2</sub> - a<sub>2</sub>b<sub>1</sub>)
But how does the bolded part work?
Regards,
Sujoy
. . .[a<sub>1</sub>x ] + [b<sub>1</sub>y] + c<sub>1</sub> = 0
. . .[a<sub>2</sub>x] + [b<sub>2</sub>y] + c<sub>2</sub> = 0
...is given by :
. . .((a<sub>1</sub>x) + (b<sub>1</sub>y) + c<sub>1</sub>) + k((a<sub>2</sub>x) + ( b<sub>2</sub>y) + c<sub>2</sub>) = 0
It's the bolded part above that I don't understand.
For this question, I do not have any difficulty in deriving the co-ordinates of the point of intersection, (x<sub>1</sub>, y<sub>1</sub>). They are:
. . .x<sub>1</sub> = ( b<sub>1</sub>c<sub>2</sub> - b<sub>2</sub>c<sub>1</sub>) / ( a<sub>1</sub>b<sub>2</sub> - a<sub>2</sub>b<sub>1</sub>)
. . .y<sub>1</sub> = (c<sub>1</sub>a<sub>2</sub> - c<sub>2</sub>a<sub>1</sub>) / (a<sub>1</sub>b<sub>2</sub> - a<sub>2</sub>b<sub>1</sub>)
But how does the bolded part work?
Regards,
Sujoy