\(\displaystyle Some \ of \ the \ seemingly \ "easy" \ integrals \ aren't \ that \ easy, \ to \ wit:\)
\(\displaystyle \int_{0}^{1}\frac{dx}{2+.25x^2} \ = \ 4 \int_{0}^{1}\frac{dx}{x^2+8}\)
\(\displaystyle Now, \ let \ x \ = \ \sqrt8tan(u), \ dx \ = \ \sqrt8sec^2(u)du\)
\(\displaystyle Hence, \ we \ have \ 4\sqrt8\int_{0}^{arctan(\sqrt2/4)}\frac{sec^2(u)du}{8tan^2(u)+8} \ = \ \sqrt2\int_{0}^{arctan(\sqrt2/4)}\frac{sec^2(u)du}{sec^2(u)}\)
\(\displaystyle = \ \sqrt2 u\bigg]_{0}^{arctan(\sqrt2/4)} \ \ \dot= \ .480601966345\)