Need help integrating this:

Hello, Stewart!

\(\displaystyle \L\int \frac{dx}{\sqrt{6x\,+\,0.01x^2}}\)

Complete the square . . .

\(\displaystyle 6x\,+\,0.01x^2 \;=\;0.01\left(x^2\,+\,600x\right)\)

. . . . . . . . .\(\displaystyle = \;0.01\left(x^2\,+\,600x\,+\,300^2\,-\,300^2\right)\)

. . . . . . . . .\(\displaystyle = \;0.01\left[(x\,+\,300)^2\,-\,300^2\right]\)


\(\displaystyle \sqrt{6x\,+\,0.01x^2}\;=\;0.1\sqrt{(x\,+\,300)^2\,-\,300^2}\)


The integral becomes: \(\displaystyle \:10\L\int\frac{dx}{\sqrt{(x\,+\,300)^2\,-\,300^2}}\)


Use the substitution: \(\displaystyle \,x\,+\,300\:=\:300\sec\theta\)

 
Top