Need help integrating this:

Hello, Stewart!

\(\displaystyle \L\int \frac{dx}{\sqrt{6x\,+\,0.01x^2}}\)

Complete the square . . .

6x+0.01x2  =  0.01(x2+600x)\displaystyle 6x\,+\,0.01x^2 \;=\;0.01\left(x^2\,+\,600x\right)

. . . . . . . . .=  0.01(x2+600x+30023002)\displaystyle = \;0.01\left(x^2\,+\,600x\,+\,300^2\,-\,300^2\right)

. . . . . . . . .=  0.01[(x+300)23002]\displaystyle = \;0.01\left[(x\,+\,300)^2\,-\,300^2\right]


6x+0.01x2  =  0.1(x+300)23002\displaystyle \sqrt{6x\,+\,0.01x^2}\;=\;0.1\sqrt{(x\,+\,300)^2\,-\,300^2}


The integral becomes: \(\displaystyle \:10\L\int\frac{dx}{\sqrt{(x\,+\,300)^2\,-\,300^2}}\)


Use the substitution: x+300=300secθ\displaystyle \,x\,+\,300\:=\:300\sec\theta

 
Top