Need help in evaluating this limit

mathuser

New member
Joined
Aug 29, 2011
Messages
2
\(\displaystyle lim_{x\to\infty} \frac{log x!}{log x^x}\)

{log x^x} evaluates to x log x. After applying L Hopital's rule succcesively i find the fraction is in the form 0/0.
Thanks in advance.
 
Have you heard of Stirling's formula?.

\(\displaystyle x!\sim x^{x}\cdot e^{-x}\sqrt{2\pi x}\)

\(\displaystyle \displaystyle\lim_{x\to \infty}\frac{ln(x^{x}\cdot e^{-x}\cdot\sqrt{2\pi x})}{xln(x)}\)

\(\displaystyle \displaystyle\lim_{x\to \infty}\frac{xln(x)-x+\frac{1}{2}ln(2\pi x)}{xln(x)}\)

\(\displaystyle \displaystyle\lim_{x\to \infty}\left[1-\frac{1}{ln(x)}+\frac{ln(2\pi x)}{2xln(x)}\right]\)

\(\displaystyle =\fbox{1}\)
 
This must be relatively slow to converge.


Using WolframAlpha, the value of the expression
is about 0.891 for x = 10,000.


Also, using WolframAlpha, the value of the expression
is about 0.9276 for x = 1,000,000.
 
thanks for solving !!

Have you heard of Stirling's formula?.

\(\displaystyle x!\sim x^{x}\cdot e^{-x}\sqrt{2\pi x}\)

\(\displaystyle \displaystyle\lim_{x\to \infty}\frac{ln(x^{x}\cdot e^{-x}\cdot\sqrt{2\pi x})}{xln(x)}\)

\(\displaystyle \displaystyle\lim_{x\to \infty}\frac{xln(x)-x+\frac{1}{2}ln(2\pi x)}{xln(x)}\)

\(\displaystyle \displaystyle\lim_{x\to \infty}\left[1-\frac{1}{ln(x)}+\frac{ln(2\pi x)}{2xln(x)}\right]\)

\(\displaystyle =\fbox{1}\)
 
\(\displaystyle \displaystyle\lim_{x\to \infty}\frac{ln(x!)}{ln(x^{x})}\)


Rewrite ln(n!) as the sum of logs, and rewrite the denominator:


\(\displaystyle \displaystyle\lim_{x\to \infty}\frac{ln(x) \ + \ ln(x - 1) \ + \ ln(x - 2) \ + ... + \ ln(2) \ + ln(1)}{xln(x)}\)


Take the derivatives of the (sum of the) terms in the numerator and of the expression in the denominator:


\(\displaystyle \displaystyle\lim_{x\to \infty}\frac{\frac{1}{x} + \frac{1}{x - 1} + \frac{1}{x - 2} + ...}{ln(x) + 1}\)


The new numerator is the sum of fractions with a descending order of
consecutive integers for its consecutive denominators.


\(\displaystyle \text{Let a and b belong to the set of Real numbers.}\)


If you can show, for appropriate a and b, that


\(\displaystyle ln(n) - a \ < \ new \ numerator \ < \ ln(n) + b,\ then \ the \ limit = 1 \)

\(\displaystyle will \ follow \ as \ n \to \infty.\)

?
 
Top