The solving of this is easy if you understand how to combine the indices (powers or exponents).
2(3) is 3+3 or 2+2+2, 3 times 2 or 2 times 3 (3 two times... or 2 three times).
Multiplication is "successive addition".
The multiplier denotes the number of twos added together.
(2)(2)(2) is 2 times 2 times 2, 2 multiplied by itself twice, 3 twos in a row multiplied together.
This is written 2[sup:1jtgfi97]3[/sup:1jtgfi97].
The index denotes the number of twos in a row multiplied together.
Hence... 3[sup:1jtgfi97]4[/sup:1jtgfi97] is a short way to write (3)(3)(3)(3)
but 3[sup:1jtgfi97]4[/sup:1jtgfi97] is not 4[sup:1jtgfi97]3[/sup:1jtgfi97], unlike 3(4) = 4(3).
Hence x[sup:1jtgfi97]2[/sup:1jtgfi97]x[sup:1jtgfi97]3[/sup:1jtgfi97]=(x)(x)(x)(x)(x) = x[sup:1jtgfi97]5[/sup:1jtgfi97]
so multiplication of a number to one power by the same number to another power is simplified
by just adding the indices....x[sup:1jtgfi97]2[/sup:1jtgfi97]x[sup:1jtgfi97]3[/sup:1jtgfi97]=x[sup:1jtgfi97]2+3[/sup:1jtgfi97].
When dividing... 5[sup:1jtgfi97]7[/sup:1jtgfi97]/5[sup:1jtgfi97]4[/sup:1jtgfi97]=(5)(5)(5)(5)(5)(5)(5)/(5)(5)(5)(5).
4 fives under the line cancel with 4 fives above the line leaving 3 fives remaining.
When you divide, you may subtract the indices 5[sup:1jtgfi97]7[/sup:1jtgfi97]/5[sup:1jtgfi97]4[/sup:1jtgfi97]=5[sup:1jtgfi97]7-4[/sup:1jtgfi97]=5[sup:1jtgfi97]3[/sup:1jtgfi97]
You must be dealing with powers of the same numbers.
Hence x[sup:1jtgfi97]p[/sup:1jtgfi97]x[sup:1jtgfi97]q[/sup:1jtgfi97]=x[sup:1jtgfi97]p+q[/sup:1jtgfi97] and x[sup:1jtgfi97]p[/sup:1jtgfi97]/x[sup:1jtgfi97]q[/sup:1jtgfi97]=x[sup:1jtgfi97]p-q[/sup:1jtgfi97]
Also (x[sup:1jtgfi97]3[/sup:1jtgfi97])[sup:1jtgfi97]2[/sup:1jtgfi97]=x[sup:1jtgfi97]3[/sup:1jtgfi97]x[sup:1jtgfi97]3[/sup:1jtgfi97]
Try that logic on your problem