integral of exp(sqrt(x))
G Guest Guest Jul 9, 2005 #2 int e^sqrt(x) dx = int sqrt(x) * e^sqrt(x) / sqrt(x) dx = int (sqrt(x) * e^sqrt(x) / sqrt(x) + 1 / (2 * sqrt(x)) * 2 * e^sqrt(x) - 1 / (2 * sqrt(x)) * 2 * e^sqrt(x)) dx = int (sqrt(x) * d/dx (2 * e^sqrt(x)) + (d/dx sqrt(x)) * 2 e^sqrt(x)) dx - int 1 / (2 * sqrt(x)) * 2 * e^sqrt(x) dx = sqrt(x) * 2 * e^sqrt(x) - int e^sqrt(x) / sqrt(x) dx = sqrt(x) * 2 * e^sqrt(x) - 2 int e^sqrt(x) / (2 * sqrt(x)) dx = sqrt(x) * 2 * e^sqrt(x) - 2 int (d/dx e^sqrt(x)) dx = 2 * sqrt(x) * e^sqrt(x) - 2 * e^sqrt(x) + C
int e^sqrt(x) dx = int sqrt(x) * e^sqrt(x) / sqrt(x) dx = int (sqrt(x) * e^sqrt(x) / sqrt(x) + 1 / (2 * sqrt(x)) * 2 * e^sqrt(x) - 1 / (2 * sqrt(x)) * 2 * e^sqrt(x)) dx = int (sqrt(x) * d/dx (2 * e^sqrt(x)) + (d/dx sqrt(x)) * 2 e^sqrt(x)) dx - int 1 / (2 * sqrt(x)) * 2 * e^sqrt(x) dx = sqrt(x) * 2 * e^sqrt(x) - int e^sqrt(x) / sqrt(x) dx = sqrt(x) * 2 * e^sqrt(x) - 2 int e^sqrt(x) / (2 * sqrt(x)) dx = sqrt(x) * 2 * e^sqrt(x) - 2 int (d/dx e^sqrt(x)) dx = 2 * sqrt(x) * e^sqrt(x) - 2 * e^sqrt(x) + C
M Matt Junior Member Joined Jul 3, 2005 Messages 183 Jul 9, 2005 #3 Hi jbevins1, One way to solve this problem is to take . . . . u = e<sup>√x</sup>, and . . . . dv = dx so that du=[e<sup>√x</sup>/(2√x)]dx and v=x, and: . . . . Then on this last integral, perform the substitution . . . . u = √x, . . . . du = dx/(2√x) to obtain: . . . . Can you finish the integration on your own?
Hi jbevins1, One way to solve this problem is to take . . . . u = e<sup>√x</sup>, and . . . . dv = dx so that du=[e<sup>√x</sup>/(2√x)]dx and v=x, and: . . . . Then on this last integral, perform the substitution . . . . u = √x, . . . . du = dx/(2√x) to obtain: . . . . Can you finish the integration on your own?
J jbevins1 New member Joined Jul 9, 2005 Messages 2 Jul 9, 2005 #4 Thanks for all of the help; that really helped me out.