Need a little help; have to use itegration by parts. Thanks

int e^sqrt(x) dx

= int sqrt(x) * e^sqrt(x) / sqrt(x) dx

= int (sqrt(x) * e^sqrt(x) / sqrt(x) + 1 / (2 * sqrt(x)) * 2 * e^sqrt(x) - 1 / (2 * sqrt(x)) * 2 * e^sqrt(x)) dx

= int (sqrt(x) * d/dx (2 * e^sqrt(x)) + (d/dx sqrt(x)) * 2 e^sqrt(x)) dx - int 1 / (2 * sqrt(x)) * 2 * e^sqrt(x) dx

= sqrt(x) * 2 * e^sqrt(x) - int e^sqrt(x) / sqrt(x) dx

= sqrt(x) * 2 * e^sqrt(x) - 2 int e^sqrt(x) / (2 * sqrt(x)) dx

= sqrt(x) * 2 * e^sqrt(x) - 2 int (d/dx e^sqrt(x)) dx

= 2 * sqrt(x) * e^sqrt(x) - 2 * e^sqrt(x) + C
 
Hi jbevins1,

One way to solve this problem is to take

. . . . u = e<sup>√x</sup>, and
. . . . dv = dx

so that du=[e<sup>√x</sup>/(2√x)]dx and v=x, and:

. . . .
parts.png


Then on this last integral, perform the substitution

. . . . u = √x,
. . . . du = dx/(2√x)

to obtain:

. . . .
parts2.png


Can you finish the integration on your own?
 
Top