my challenge problem - - maximum product

lookagain

Elite Member
Joined
Aug 22, 2010
Messages
3,258
.
.
.

Let  x, y,  and  z  be  the  variables.\displaystyle Let \ \ x, \ y, \ \ and \ \ z \ \ be \ \ the \ \ variables.

Let  a, b, c,  and  d  be  the  variable  constants.\displaystyle Let \ \ a, \ b, \ c, \ \ and \ \ d \ \ be \ \ the \ \ variable \ \ constants.

Let  a, b, c, d, x, y,  and  z  belong  to  the  set  of  the  positive  real  numbers.\displaystyle Let \ \ a, \ b, \ c, \ d, \ x, \ y, \ \ and \ \ z \ \ belong \ \ to \ \ the \ \ set \ \ of \ \ the \ \ positive \ \ real \ \ numbers.

If  ax+by+cz=d,  then  determine  the  maximum  value  of  the  product\displaystyle If \ \ ax + by + cz = d, \ \ then \ \ determine \ \ the \ \ maximum \ \ value \ \ of \ \ the \ \ product xyz  in  terms  of  a, b, c,  and  d.\displaystyle xyz \ \ in \ \ terms \ \ of \ \ a, \ b, \ c, \ \ and \ \ d.
 
Last edited by a moderator:
.
.
.

Let  x, y,  and  z  be  the  variables.\displaystyle Let \ \ x, \ y, \ \ and \ \ z \ \ be \ \ the \ \ variables.

Let  a, b, c,  and  d  be  the  variable  constants.\displaystyle Let \ \ a, \ b, \ c, \ \ and \ \ d \ \ be \ \ the \ \ variable \ \ constants.

Let  a, b, c, d, x, y,  and  z  belong  to  the  set  of  the  positive  real  numbers.\displaystyle Let \ \ a, \ b, \ c, \ d, \ x, \ y, \ \ and \ \ z \ \ belong \ \ to \ \ the \ \ set \ \ of \ \ the \ \ positive \ \ real \ \ numbers.

If  ax+by+cz=d,  then  determine  the  maximum  value  of  the  product  xyz  in  terms  of  a, b, c,  and  d.\displaystyle If \ \ ax + by + cz = d, \ \ then \ \ determine \ \ the \ \ maximum \ \ value \ \ of \ \ the \ \ product \ \ xyz \ \ in \ \ terms \ \ of \ \ a, \ b, \ c, \ \ and \ \ d.
Given: Given ax+by+cz=d, find maximum of xyz.\displaystyle Given\ ax + by + cz = d,\ find\ maximum\ of\ xyz.

I am going to ignore the special cases where a = 0, b = 0, or c = 0. Highlight below to see my answer.

Let w=xyz+u(daxbycz).\displaystyle Let\ w = xyz + u(d - ax - by - cz).

δwδx=yzua    δwδx=0  iff  yz=au    u=yza.\displaystyle \dfrac{\delta w}{\delta x} = yz - ua \implies \dfrac{\delta w}{\delta x} = 0\ \ iff\ \ yz = au \implies u = \dfrac{yz}{a}.

δwδy=xzub    δwδy=0  iff  xz=bu=byza    x=bya.\displaystyle \dfrac{\delta w}{\delta y} = xz - ub \implies \dfrac{\delta w}{\delta y} = 0\ \ iff\ \ xz = bu = \dfrac{byz}{a} \implies x = \dfrac{by}{a}.

δwδz=xyuc    δwδy=0  iff  xy=cu    by2a=cyza    z=byc.\displaystyle \dfrac{\delta w}{\delta z} = xy - uc \implies \dfrac{\delta w}{\delta y} = 0\ \ iff\ \ xy = cu \implies \dfrac{by^2}{a} = \dfrac{cyz}{a} \implies z = \dfrac{by}{c}.

δwδu=(daxbycz)    δwδu=0  iff  d=ax+by+cz    \displaystyle \dfrac{\delta w}{\delta u} = (d - ax - by - cz) \implies \dfrac{\delta w}{\delta u} = 0\ \ iff\ \ d = ax + by + cz \implies

d=abya+by+cbyc=3by    y=d3b    \displaystyle d = \dfrac{aby}{a} + by + \dfrac{cby}{c} = 3by \implies y = \dfrac{d}{3b} \implies

x=bay=bad3b=d3a  and  z=bcy=z=bcd3b=d3c.\displaystyle x = \dfrac{b}{a} * y = \dfrac{b}{a} * \dfrac{d}{3b} = \dfrac{d}{3a}\ \ and\ \ z = \dfrac{b}{c} * y = z = \dfrac{b}{c} * \dfrac{d}{3b} = \dfrac{d}{3c}.

Constrained maximum of xyz=d327abc.\displaystyle Constrained\ maximum\ of\ xyz = \dfrac{d^3}{27abc}.
 
Top