Multiply limits: Given lim[n->infy]x_n = 0, [x_n y_n] = 0, which stmt is correct?

Roberto37

New member
Joined
Jun 3, 2018
Messages
5
What we need to observe when we multiply limits?

Sendo limn+xn=0,\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, x_n\, =\, 0, para que

. . .limn+[xnyn]=0,\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, \left[x_n\, \cdot\, y_n\right]\, =\, 0, basta que

. . . . .I) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja negativo

. . . . .II) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja positivo

. . . . .III) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja infinito

. . . . .IV) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja um numero real

a) Only the affirmative I is correct.

b) Only affirmative IV is correct.

c) Only affirmative II is correct.

d) Only affirmative III is correct.



Thank you.
 

Attachments

  • limite 2.jpg
    limite 2.jpg
    39.1 KB · Views: 18
Last edited by a moderator:
What we need to observe when we multiply limits?

Sendo limn+xn=0,\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, x_n\, =\, 0, para que

. . .limn+[xnyn]=0,\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, \left[x_n\, \cdot\, y_n\right]\, =\, 0, basta que

. . . . .I) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja negativo

. . . . .II) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja positivo

. . . . .III) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja infinito

. . . . .IV) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja um numero real

a) Only the affirmative I is correct.

b) Only affirmative IV is correct.

c) Only affirmative II is correct.

d) Only affirmative III is correct.



Thank you.

"multiply limits" doesn't mean anything.

If the limit exists, it has a value. Multiply the values.
 
Last edited by a moderator:
What we need to observe when we multiply limits?

Sendo limn+xn=0,\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, x_n\, =\, 0, para que

. . .limn+[xnyn]=0,\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, \left[x_n\, \cdot\, y_n\right]\, =\, 0, basta que

. . . . .I) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja negativo

. . . . .II) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja positivo

. . . . .III) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja infinito

. . . . .IV) limn+yn\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n seja um numero real

a) Only the affirmative I is correct.

b) Only affirmative IV is correct.

c) Only affirmative II is correct.

d) Only affirmative III is correct.



Thank you.
Lim (f(x)g(x)) = lim f(x) * lim g(x) if they both exist
 
Last edited by a moderator:
Top