What we need to observe when we multiply limits?
Sendo \(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, x_n\, =\, 0,\) para que
. . .\(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, \left[x_n\, \cdot\, y_n\right]\, =\, 0,\) basta que
. . . . .I) \(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n\) seja negativo
. . . . .II) \(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n\) seja positivo
. . . . .III) \(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n\) seja infinito
. . . . .IV) \(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n\) seja um numero real
a) Only the affirmative I is correct.
b) Only affirmative IV is correct.
c) Only affirmative II is correct.
d) Only affirmative III is correct.
Thank you.
Sendo \(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, x_n\, =\, 0,\) para que
. . .\(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, \left[x_n\, \cdot\, y_n\right]\, =\, 0,\) basta que
. . . . .I) \(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n\) seja negativo
. . . . .II) \(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n\) seja positivo
. . . . .III) \(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n\) seja infinito
. . . . .IV) \(\displaystyle \displaystyle \lim_{n \rightarrow +\infty}\, y_n\) seja um numero real
a) Only the affirmative I is correct.
b) Only affirmative IV is correct.
c) Only affirmative II is correct.
d) Only affirmative III is correct.
Thank you.
Attachments
Last edited by a moderator: