Multiple integrals help

0π/60π/3xsin(x+y)dydx = 0π/6xcos(x+y)]0π/3dx\displaystyle \int_ {0}^{\pi/6}\int_ {0}^{\pi/3}xsin(x+y)dydx \ = \ \int_{0}^{\pi/6}-xcos(x+y)\bigg]_{0}^{\pi/3}dx

= 0π/6[xcos(x)xcos(x+π/3)]dx = 120π/6xcos(x)dx+320π/6xsin(x)dx\displaystyle = \ \int_{0}^{\pi/6}[xcos(x)-xcos(x+\pi/3)]dx \ = \ \frac{1}{2}\int_{0}^{\pi/6}xcos(x)dx+\frac{\sqrt3}{2}\int_{0}^{\pi/6}xsin(x)dx

= .063912395792+.040313620193 = .104226015985\displaystyle = \ .063912395792+.040313620193 \ = \ .104226015985

Note: In the second row, expand cos(x+π/3) and then use integration by parts.\displaystyle Note: \ In \ the \ second \ row, \ expand \ cos(x+\pi/3) \ and \ then \ use \ integration \ by \ parts.

Afterthought: Or, if you have a trusty TI89, just plug in the double integral and, walla,\displaystyle Afterthought: \ Or, \ if \ you \ have \ a \ trusty \ TI-89, \ just \ plug \ in \ the \ double \ integral \ and, \ walla,

you have your answer.\displaystyle you \ have \ your \ answer.
 
Top