I just don't understand where to start. At least I know theres a rule now! How would you start off a problem like this? Do you plug stuff in or is there some assuming to be done?
EDIT: Ohhh, I see what you did. Towards the end, do you just subtract? Would you take n away from 2/n^3 ? So it would end up being 2/n^2 ?
I could be misunderstanding you :/
I am afraid you are.
As n gets larger and larger what does \(\displaystyle \dfrac{2}{n}\) become approximately equal to?
If n grows beyond all bounds, what is the limit of n?
There are some fundamental laws of limits that you need to MEMORIZE:
\(\displaystyle \displaystyle \lim_{x \rightarrow a}f(x) = b \in \mathbb R\ and\ \lim_{x \rightarrow a}g(x) = c \in \mathbb R \implies \left\{\lim_{x \rightarrow a}f(x) + g(x)\right\} = (b + c) \in \mathbb R.\)
\(\displaystyle \displaystyle \lim_{x \rightarrow a}f(x) = b \in \mathbb R\ and\ \lim_{x \rightarrow a}g(x) = c \in \mathbb R \implies \left\{\lim_{x \rightarrow a}f(x) - g(x)\right\} = (b - c) \in \mathbb R.\)
\(\displaystyle \displaystyle \lim_{x \rightarrow a}f(x) = b \in \mathbb R\ and\ \lim_{x \rightarrow a}g(x) = c \in \mathbb R \implies \left\{\lim_{x \rightarrow a}f(x) * g(x)\right\} = (b * c) \in \mathbb R.\)
\(\displaystyle \displaystyle \lim_{x \rightarrow a}f(x) = b \in \mathbb R\ and\ \lim_{x \rightarrow a}g(x) = c \in \mathbb R\ and\ c \ne 0 \implies \left\{\lim_{x \rightarrow a}\dfrac{f(x)}{g(x)}\right\} = \dfrac{b}{c} \in \mathbb R.\)
\(\displaystyle \displaystyle \lim_{x \rightarrow a}f(x) = b \in \mathbb R\ and\ \lim_{x \rightarrow a}g(x) = \infty \implies \left\{\lim_{x \rightarrow a}f(x) + g(x)\right\} = \infty.\)
\(\displaystyle \displaystyle \lim_{x \rightarrow a}f(x) = b \in \mathbb R\ and\ \lim_{x \rightarrow a}g(x) = \infty \implies \left\{\lim_{x \rightarrow a}f(x) - g(x)\right\} = - \infty.\)
\(\displaystyle \displaystyle \lim_{x \rightarrow a}f(x) = b \in \mathbb R\ and\ \lim_{x \rightarrow a}g(x) = \infty \implies \left\{\lim_{x \rightarrow a}f(x) * g(x)\right\} = \infty.\)
\(\displaystyle \displaystyle \lim_{x \rightarrow a}f(x) = b \in \mathbb R\ and\ \lim_{x \rightarrow a}g(x) = \infty \implies \left\{\lim_{x \rightarrow a}\dfrac{f(x)}{g(x)}\right\} = 0.\)
These laws apply whether or not a is a real number or positive or negative infinity.
For many limit problems, these will let you solve them by breaking the limit of a complex function into a combination of limits of simpler functions.
Notice what is not covered by those laws.
\(\displaystyle \displaystyle \lim_{x \rightarrow a}f(x) = 0\ and\ \lim_{x \rightarrow a}g(x) = 0.\)
\(\displaystyle \displaystyle \lim_{x \rightarrow a}f(x) = \infty\ and\ \lim_{x \rightarrow a}g(x) = \infty.\)
The rule for rational functions is a consequence of these rules