S sallyk57 New member Joined Feb 8, 2006 Messages 15 Aug 7, 2006 #1 Please help with this question. Thanks Find the Least Common Denominator of: 1/(x^2 +x ), 1/(x^2 - 1), and 1/(x^3 - x) the choices are... a)x^3 + 2x^2 - 1 b)x^7 - 1 c)(x^2 + x)(x^2 - 1)(x^3 - x) d)x(x + 1)(x - 1)
Please help with this question. Thanks Find the Least Common Denominator of: 1/(x^2 +x ), 1/(x^2 - 1), and 1/(x^3 - x) the choices are... a)x^3 + 2x^2 - 1 b)x^7 - 1 c)(x^2 + x)(x^2 - 1)(x^3 - x) d)x(x + 1)(x - 1)
pka Elite Member Joined Jan 29, 2005 Messages 11,978 Aug 7, 2006 #2 \(\displaystyle \begin{array}{rcl} \frac{1}{{x^2 + x}} & = & \frac{1}{{x\left( {x + 1} \right)}} \\ \frac{1}{{x^2 - x}} & = & \frac{1}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \\ \frac{1}{{x^3 - x}} & = & \frac{1}{{x\left( {x + 1} \right)\left( {x - 1} \right)}} \\ \end{array}\) What is the LCD?
\(\displaystyle \begin{array}{rcl} \frac{1}{{x^2 + x}} & = & \frac{1}{{x\left( {x + 1} \right)}} \\ \frac{1}{{x^2 - x}} & = & \frac{1}{{\left( {x + 1} \right)\left( {x - 1} \right)}} \\ \frac{1}{{x^3 - x}} & = & \frac{1}{{x\left( {x + 1} \right)\left( {x - 1} \right)}} \\ \end{array}\) What is the LCD?