[MOVED] finding millionth derivative for f(x)=xe^-x

Re: millionth derivative

henry200 said:
how would i go about finding the millionth derivative for f(x)=xe^-x.

f'(x) = e^(-x) - x*e^(-x)

f"(x) = -e^(-x) -[e^(-x) - x*e^(-x)] = - 2*e^(-x) + x*e^(-x)

f"'(x) = 2*e^(-x) + [e^(-x) - x*e^(-x)] = 3e^(-x) - x*e^(-x) <---- corrected

f""(x) = -3e^(-x) - [e^(-x) - x*e^(-x)] ....see a pattern!!
 
Hello, henry200!

Find the millionth derivative for: \(\displaystyle \:f(x)\:=\:xe^{-x}\)

Look for a pattern . . .

\(\displaystyle \begin{array}{ccccc}f'(x) & \;= \;& x(-e^{-x})\,+\,1\cdot e^{-x} & \;= \;& -e^{-x}(x\,-\,1) \\ \\

f''(x) &\;=\;& e^{-x}(-1)\,-\,e^{-x}(1\,-\,x) & \;=\; & e^{-x}(x\,-\,2) \\ \\

f'''(x)&\;=\;&e^{-x}\cdot1\,-\,e^{-x}(x\,-\,2) &\;=\;& -e^{-x}(x\,-\,3) \\ \\

f^{(4)} &\;=\;& e^{-x}(-1)\,-\,e^{-x}(3\,-\,x) &\;=\;& e^{-x}(x\,-\,4) \\ \\

\vdots & & \vdots & & \vdots\end{array}\)
. . . . . . . See it?

The n<sup>th</sup> derivative is: \(\displaystyle \:f^{(n)} \;=\;(-1)^ne^{-x}(x\,-\,n)\)
 
Top