[MOVED] Factoring expression: (3x - 2)^-4 (x + 3) + ....

Take out the common factors of (3x - 2)<sup>-3</sup>(x + 3), and then simplify what's left.

Eliz.
 
Re: Factoring expression

Hello, kC_Lee!

This is not a Calculus problem . . .
    \displaystyle \;\;but I bet it came from the Product Rule.


How would you factor: \(\displaystyle \,(x\,+\,3)(3x\,-\,2)^{-4}\:+\:(x\,+\,3)^2 (3x\,-\,2)^{-3}\)

We have: ab4+a2b3\displaystyle \,ab^{-4}\,+\,a^2b^{-3} . . . which factors: ab4(1+ab)\displaystyle \,ab^{-4}(1\,+\,ab)


Hence: \(\displaystyle \,(x\,+\,3)(3x\,-\,2)^{-4}\:+\:(x\,+\,3)^2 (3x\,-\,2)^{-3} \;= \;(x\,+\,3)(3x\,-\,2)^{-4}\left[1\,+\,(x\,+\,3)(3x\,-\,2)\right]\)

. . =  (x+3)(3x2)4[1+3x2+7x6]  =  (x+3)(3x2)(3x2+7x5)\displaystyle = \;(x\,+\,3)(3x\,-\,2)^{-4}\left[1\,+\,3x^2\,+\,7x\,-\,6\right] \;= \;(x\,+\,3)(3x\,-\,2)(3x^2\,+\,7x\,-\,5)

 
Top