How would you factor (3x - 2)^-4 (x + 3) + (x + 3)^2 (3x - 2)^-3
K kC_Lee New member Joined Aug 19, 2006 Messages 2 Aug 20, 2006 #1 How would you factor (3x - 2)^-4 (x + 3) + (x + 3)^2 (3x - 2)^-3
stapel Super Moderator Staff member Joined Feb 4, 2004 Messages 16,582 Aug 20, 2006 #2 Take out the common factors of (3x - 2)<sup>-3</sup>(x + 3), and then simplify what's left. Eliz.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Aug 20, 2006 #3 Re: Factoring expression Hello, kC_Lee! This is not a Calculus problem . . . \(\displaystyle \;\;\)but I bet it came from the Product Rule. How would you factor: \(\displaystyle \,(x\,+\,3)(3x\,-\,2)^{-4}\:+\x\,+\,3)^2 (3x\,-\,2)^{-3}\) Click to expand... We have: \(\displaystyle \,ab^{-4}\,+\,a^2b^{-3}\) . . . which factors: \(\displaystyle \,ab^{-4}(1\,+\,ab)\) Hence: \(\displaystyle \,(x\,+\,3)(3x\,-\,2)^{-4}\:+\x\,+\,3)^2 (3x\,-\,2)^{-3} \;= \;(x\,+\,3)(3x\,-\,2)^{-4}\left[1\,+\,(x\,+\,3)(3x\,-\,2)\right]\) . . \(\displaystyle = \;(x\,+\,3)(3x\,-\,2)^{-4}\left[1\,+\,3x^2\,+\,7x\,-\,6\right] \;= \;(x\,+\,3)(3x\,-\,2)(3x^2\,+\,7x\,-\,5)\)
Re: Factoring expression Hello, kC_Lee! This is not a Calculus problem . . . \(\displaystyle \;\;\)but I bet it came from the Product Rule. How would you factor: \(\displaystyle \,(x\,+\,3)(3x\,-\,2)^{-4}\:+\x\,+\,3)^2 (3x\,-\,2)^{-3}\) Click to expand... We have: \(\displaystyle \,ab^{-4}\,+\,a^2b^{-3}\) . . . which factors: \(\displaystyle \,ab^{-4}(1\,+\,ab)\) Hence: \(\displaystyle \,(x\,+\,3)(3x\,-\,2)^{-4}\:+\x\,+\,3)^2 (3x\,-\,2)^{-3} \;= \;(x\,+\,3)(3x\,-\,2)^{-4}\left[1\,+\,(x\,+\,3)(3x\,-\,2)\right]\) . . \(\displaystyle = \;(x\,+\,3)(3x\,-\,2)^{-4}\left[1\,+\,3x^2\,+\,7x\,-\,6\right] \;= \;(x\,+\,3)(3x\,-\,2)(3x^2\,+\,7x\,-\,5)\)
K kC_Lee New member Joined Aug 19, 2006 Messages 2 Aug 22, 2006 #4 oh I get it now. thanks for the help!