I think I have figured out how to prove: If a > b > 0, then a^2 > b^2. It goes something like this:
a > b > 0 ==> a^2 > ab
a > b > 0 ==> ab > b^2
Since a^2 > ab and ab > b^2, then a^2 > b^2.
I'm having more trouble with these proofs:
1. If a > b > 0, then sqrt(a) > sqrt(b).
2. If x > y, then x^3 > y^3.
Any hints?
a > b > 0 ==> a^2 > ab
a > b > 0 ==> ab > b^2
Since a^2 > ab and ab > b^2, then a^2 > b^2.
I'm having more trouble with these proofs:
1. If a > b > 0, then sqrt(a) > sqrt(b).
2. If x > y, then x^3 > y^3.
Any hints?