1.) Show that the given sequence is eventually strictly increasing or decreasing.
\(\displaystyle \frac {\ n!}{3^n}\limits_{n=1}^\infty\)
\(\displaystyle \frac {\ a_{n+1}}{a_n} = \frac {(\ n+1)!}{3^{n+1}} * \frac {\ 3^n}{n!} =?\)
2.) Show: \(\displaystyle \frac {\ 1}{1*3}+ \frac {\ 1}{2*4}+ \frac {\ 1}{3*5}+...= \frac {\ 3}{4}\)
Telescopic? \(\displaystyle S_n = \sum\limits_{k=1}^n \frac {\ 1}{(2k-1)(2k+1)}= \frac {\ 1}{2} \sum\limits_{k=1}^n \frac {\ 1}{(2k-1)} - \sum\limits_{k=1}^n \frac {\ 1}{2k+1}=?\)
Thanks
\(\displaystyle \frac {\ n!}{3^n}\limits_{n=1}^\infty\)
\(\displaystyle \frac {\ a_{n+1}}{a_n} = \frac {(\ n+1)!}{3^{n+1}} * \frac {\ 3^n}{n!} =?\)
2.) Show: \(\displaystyle \frac {\ 1}{1*3}+ \frac {\ 1}{2*4}+ \frac {\ 1}{3*5}+...= \frac {\ 3}{4}\)
Telescopic? \(\displaystyle S_n = \sum\limits_{k=1}^n \frac {\ 1}{(2k-1)(2k+1)}= \frac {\ 1}{2} \sum\limits_{k=1}^n \frac {\ 1}{(2k-1)} - \sum\limits_{k=1}^n \frac {\ 1}{2k+1}=?\)
Thanks