Consider a thin plate of constant density which occupies the region in the first quadrant inside the curve:
\(\displaystyle x^2+4y^2=4\)
Find moment of inertia about line y=2
Attempt to solution:
\(\displaystyle y=\frac{\sqrt{4-x^2}}{2}\)
\(\displaystyle I(y=2)=\frac{\rho}{3}\int_0^2(\frac{\sqrt{4-x^2}}{2}-2)^3-(0-2)^3\)
\(\displaystyle I(y=2)=\frac{\rho}{3}\int_0^2(\frac{\sqrt{4-x^2}}{2}-2)^3+\frac{\rho}{3}\int_0^28dx\)
\(\displaystyle I(y=2)=\frac{\rho}{3}\int_0^2(\frac{\sqrt{4-x^2}}{2}-2)^3\)
I am stuck here how do l integrate this this thing ?
\(\displaystyle x^2+4y^2=4\)
Find moment of inertia about line y=2
Attempt to solution:
\(\displaystyle y=\frac{\sqrt{4-x^2}}{2}\)
\(\displaystyle I(y=2)=\frac{\rho}{3}\int_0^2(\frac{\sqrt{4-x^2}}{2}-2)^3-(0-2)^3\)
\(\displaystyle I(y=2)=\frac{\rho}{3}\int_0^2(\frac{\sqrt{4-x^2}}{2}-2)^3+\frac{\rho}{3}\int_0^28dx\)
\(\displaystyle I(y=2)=\frac{\rho}{3}\int_0^2(\frac{\sqrt{4-x^2}}{2}-2)^3\)
I am stuck here how do l integrate this this thing ?