Moment of inertia of thin plate inside QI and x^2+4y^2=4

chengeto

New member
Joined
Feb 28, 2009
Messages
49
Consider a thin plate of constant density which occupies the region in the first quadrant inside the curve:

x2+4y2=4\displaystyle x^2+4y^2=4

Find moment of inertia about line y=2

Attempt to solution:

y=4x22\displaystyle y=\frac{\sqrt{4-x^2}}{2}

I(y=2)=ρ302(4x222)3(02)3\displaystyle I(y=2)=\frac{\rho}{3}\int_0^2(\frac{\sqrt{4-x^2}}{2}-2)^3-(0-2)^3

I(y=2)=ρ302(4x222)3+ρ3028dx\displaystyle I(y=2)=\frac{\rho}{3}\int_0^2(\frac{\sqrt{4-x^2}}{2}-2)^3+\frac{\rho}{3}\int_0^28dx

I(y=2)=ρ302(4x222)3\displaystyle I(y=2)=\frac{\rho}{3}\int_0^2(\frac{\sqrt{4-x^2}}{2}-2)^3

I am stuck here how do l integrate this this thing ?
 

Attachments

  • untitled.JPG
    untitled.JPG
    5.3 KB · Views: 127
Top