Do you know Euler's totient function, [imath]\phi(n)[/imath]?[math]15^{323}\mod\,51\\\\\text{how to solve it if}\,\,\red{\gcd(15,51)=3}\,\,?[/math]
Can you show that if [math]a\equiv b \mod p[/math] then for all natural [imath]k[/imath]: [math]ka \equiv kb \mod kp[/math] ?[math]15^{323}\mod\,51\\\\\text{how to solve it if}\,\,\red{\gcd(15,51)=3}\,\,?[/math]
I was able to solve this using @BigBeachBanana 's method:Do you know Euler's totient function, [imath]\phi(n)[/imath]?
[math]x^y \mod n \equiv x^{y \mod \phi(n)} \mod n[/math]
[imath]a\equiv b \mod p \implies p|(a-b)[/imath]. So, [imath]p[/imath] divides [imath]k(a-b) = ak-bk[/imath].Can you show that if [math]a\equiv b \mod p[/math] then for all natural [imath]k[/imath]: [math]ka \equiv kb \mod kp[/math] ?
It is supposed to be [imath]\mod kp[/imath].Is it supposed to be mod k\mod kmodk or mod kp?\mod kp?modkp? Also, I don't see where you're going with this can you expand?