minimal polynomial

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,566
here is the question

Determine the minimal polynomial over Q\displaystyle \mathbb{Q} for the element 2+5\displaystyle \sqrt{2} + \sqrt{5}.


my attemb
i can write the element in 4\displaystyle 4 different ways
2+5\displaystyle \sqrt{2} + \sqrt{5}
25\displaystyle \sqrt{2} - \sqrt{5}
2+5\displaystyle -\sqrt{2} + \sqrt{5}
25\displaystyle -\sqrt{2} - \sqrt{5}
so i think this mean the minimal polynomial will be of degree 4\displaystyle \leq 4
this are the factors
(x2+5)(x25)(x2+5)(x25)\displaystyle (x - \sqrt{2} + \sqrt{5})(x - \sqrt{2} - \sqrt{5})(x - -\sqrt{2} + \sqrt{5})(x - -\sqrt{2} - \sqrt{5})
how can i tell if this is the minimal polynomial without simplifying?😣
 
Please do not write xc.x -- c\,. This is x+c. x+c \,.

You want to find a polynomial p(x)=xn+an1xn1++a1x+a0 p(x)=x^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0 with minimal n n such that p(2+5)=0 p\left(\sqrt{2}+\sqrt{5}\right)=0 or algebraically written Q[2+5]=Q[x]/p(x). \mathbb{Q}\left[\sqrt{2}+\sqrt{5}\right]=\mathbb{Q}[x]/\bigl\langle p(x) \bigr\rangle .

The field Q[2+5] \mathbb{Q}\left[\sqrt{2}+\sqrt{5}\right] has to contain ξ=2+5 \xi=\sqrt{2}+\sqrt{5} and therewith all its powers. Let's see how far we get:
(2+5)1=2+5(2+5)2=7+210(2+5)3=172+115(2+5)4=89+2810\begin{array}{lll} \left(\sqrt{2}+\sqrt{5}\right)^1&=\sqrt{2}+\sqrt{5}\\[6pt] \left(\sqrt{2}+\sqrt{5}\right)^2&=7+2\sqrt{10}\\[6pt] \left(\sqrt{2}+\sqrt{5}\right)^3&=17\sqrt{2}+11\sqrt{5}\\[6pt] \left(\sqrt{2}+\sqrt{5}\right)^4&=89+28\sqrt{10}\\[6pt] \end{array}The elements {ξ0,ξ1,ξ2,ξ3} \left\{\xi^0\, , \,\xi^1\, , \,\xi^2\, , \,\xi^3\right\} are Q \mathbb{Q} -linearly independent (prove it!) but ξ414ξ2+9ξ0=0. \xi^4-14\xi^2+9\xi^0=0 . Hence dimQQ[ξ]=n=4. \dim_\mathbb{Q}\mathbb{Q}[\xi]=n=4.

However, you need to show that q(x)=(x25)(x2+5)(x+25)(x+2+5)Q[x] q(x)=\left(x-\sqrt{2}-\sqrt{5}\right)\left(x-\sqrt{2}+\sqrt{5}\right)\left(x+\sqrt{2}-\sqrt{5}\right)\left(x+\sqrt{2}+\sqrt{5}\right)\in \mathbb{Q}[x] to conclude p(x)=q(x) p(x)=q(x) (how?) so that you need to calculate the polynomial, i.e. multiply its factors.
 
thank

i'll go directly to the something i understand

(x25)(x2+5)(x+25)(x+2+5)\displaystyle (x-\sqrt{2}-\sqrt{5})(x-\sqrt{2}+\sqrt{5})(x+\sqrt{2}-\sqrt{5})(x+\sqrt{2}+\sqrt{5})

=\displaystyle =

(x22x+5x2x+2105x+105)(x2+2x+5x+2x+2+105x105)\displaystyle (x^2 - \sqrt{2}x + \sqrt{5}x - \sqrt{2}x + 2 - \sqrt{10} - \sqrt{5}x + \sqrt{10} - 5)(x^2 + \sqrt{2}x + \sqrt{5}x + \sqrt{2}x + 2 + \sqrt{10} - \sqrt{5}x - \sqrt{10} - 5)

=\displaystyle =

(x222x3)(x2+22x3)\displaystyle (x^2 - 2\sqrt{2}x - 3)(x^2 + 2\sqrt{2}x - 3)

=\displaystyle =

x4+22x33x222x38x2+62x3x262x+9\displaystyle x^4 + 2\sqrt{2}x^3 - 3x^2 - 2\sqrt{2}x^3 - 8x^2 + 6\sqrt{2}x - 3x^2 - 6\sqrt{2}x + 9

=\displaystyle =

x414x2+9\displaystyle x^4 - 14x^2 + 9

if this is irreducible then it's the minimal polynomial

what happen if it's reducible?
 
If it's irreducible, then you are done. No factor, no intermediate field in QQ(2+5).\mathbb{Q}\subseteq \mathbb{Q}\left(\sqrt{2}+\sqrt{5}\right). Why is it irreducible?
 
Why is it irreducible?
look in this factor
(x222x3)(x2+22x3)\displaystyle (x^2 - 2\sqrt{2}x - 3)(x^2 + 2\sqrt{2}x - 3)
i think it's irreducible because some of the coeeficients is irrational
 
Top