The original problem:
What condition(s) are sufficient to ensure that the second order conditions are satisfied for the
optimization problem below? You can express this condition in terms of \(\displaystyle \alpha, \beta, \gamma, \delta\) and the
values of x and y that satisfy the first order conditions that solve the problem below, x* and y*,
but not in terms of \(\displaystyle \lambda^*\). There is no need to evaluate determinants – state condition in terms of
determinants if you desire.
\(\displaystyle \max_{x,y} \;x^\alpha+y^\beta \qquad s.t.\;\; x^\gamma+y^\delta<b\)
What i have done:
\(\displaystyle $f(x,y)=x^\alpha+y^\beta$ and $g(x,y)=x^\gamma+y^\delta$ with $0<\alpha,\beta,\gamma,\delta<1$\[\mathcal{L}=x^\alpha+y^\beta+\lambda(x^\gamma+y^\delta-b)\]FOC:\begin{align}\mathcal{L}_x: \alpha x^{\alpha-1}+\gamma \lambda x^{\gamma-1}=0\\\mathcal{L}_y: \beta y^{\beta-1}+\delta \lambda y^{\delta-1}=0\\\mathcal{L}_\lambda: x^\gamma+y^\delta-b=0\end{align} from (1) and (2) get \[x=\frac{\alpha\delta}{\gamma\beta}y^{\frac{\delta-\beta}{\gamma-\alpha}}\] substitute in (3) for \[b=\left(\frac{\alpha\delta}{\gamma\beta}y^{\frac{\delta-\beta}{\gamma-\alpha}}\right)^\gamma+y^\delta\] How do i solve for y in terms of \alpha, \beta, \gamma, \delta, \mathrm{and}\, b?\)